后端一次给你10万条数据,如何优雅展示

一次渲染10万条数据会造成页面加载速度缓慢,那么我们可以不要一次性渲染这么多数据,而是分批次渲染, 比如一次10000条,分10次来完成, 这样或许会对页面的渲染速度有提升。 然而,如果这13次操作在同一个代码执行流程中运行,那似乎不但无法解决糟糕的页面卡顿问题,反而会将代码复杂化。 类似的问题在其它语言最佳的解决方案是使用多线程,JavaScript虽然没有多线程,但是setTimeout和setInterval两个函数却能起到和多线程差不多的效果。 因此,要解决这个问题, 其中的setTimeout便可以大显身手。 setTimeout函数的功能可以看作是在指定时间之后启动一个新的线程来完成任务。

ajax 请求。。。。

function loadAll(response) {
    //将10万条数据分组, 每组500条,一共200组
    var groups = group(response);
    for (var i = 0; i < groups.length; i++) {
        //闭包, 保持i值的正确性
        window.setTimeout(function () {
            var group = groups[i];
            var index = i + 1;
            return function () {
                //分批渲染
                loadPart( group, index );
            }
        }(), 1);
    }
}

//数据分组函数(每组500条)
function group(data) {
    var result = [];
    var groupItem;
    for (var i = 0; i < data.length; i++) {
        if (i % 500 == 0) {
            groupItem != null && result.push(groupItem);
            groupItem = [];
        }
        groupItem.push(data[i]);
    }
    result.push(groupItem);
    return result;
}
var currIndex = 0;
//加载某一批数据的函数
function loadPart( group, index ) {
    var html = "";
    for (var i = 0; i < group.length; i++) {
        var item = group[i];
        html += "<li>title:" + item.title + index + " content:" + item.content + index + "</li>";
    }
    //保证顺序不错乱
    while (index - currIndex == 1) {
        $("#content").append(html);
        currIndex = index;
    }
}

优化方案可以

createDocumentFragment 
requestAnimationFrame 
setTimeout(()=>{ 
  const total = 10000 //插入一万条数据 
  const once = 20 // 一次插入的数据 
  const loopCount = Math.ceil(total/once) //插入数据需要的次数 
  let renderCount = 0 
  const ul = document.querySelector('ul') //创建、添加li节点 function add(){ const fragment = document.createDocumentFragment()
  for(let i=0;i<once;i++){ 
    const li = document.createElement('li')
    li.innerText = Math.floor(Math.random()*total) 
    fragment.appendChild(li) 
  }
  ul.appendChild(fragment) 
  renderCount++; 
  loop() 
} 

function loop(){ 
  if(renderCount < loopCount){
     window.requestAnimationFrame(add) 
} 
 loop() 
} 
loop() 
},0)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容