关于语言模型的一些新理解

这几天又陆陆续续的读了关于一些关于NLP上语言模型的书籍,简单总结了下自己的新的认识:

一:语言模型的性能评价:

1:语言模型的评价目标:

语言模型的计算的概率分布能够与真实的理想模型的概率分布可以相接近(这一点其实是比较困难的,但是这是我们一直追求的目标)

2:困难:

无法知道语言模型的理想模型的真实分布

3:常用的几个指标;

交叉熵,困惑度(这又涉及到了关于熵的相关计算,这将和离散数学和图论上学习到的知识应用到实际生产生活中)

4:自然语言统计方法的一般步骤:

1:收集大量的语料(这是基础操作,也是工作量最大的操作)

2:针对语料进行统计分析,得出知识(知识是一些概率,比如像n元语法这样)

3:针对某些场景建立算法,即使是计算简单的概率也会有复杂的算法可以运用,有的甚至可以直接标注(与nlp相关的算法很复杂,但是幸好翻来覆去就这几个)

二:语言模型给我的启示:

开启了自然语言处理的统计方法时代,统计语言模型大概是自然语言处理中最简洁也最漂亮的模型了,在自然语言处理中,统计语言模型的应用包括语音识别、机器翻译、中文分词、拼写检查、语言识别、输入法等等,以至于Google科学家吴军老师的《数学之美》系列第一篇就介绍了统计语言模型

n元语言模型的应用非常广泛,最早期的应用是语音识别、机器翻译等问题。哈尔滨工业大学王晓龙教授最早将其应用到音字转换问题,提出了“语句级拼音输入法”,后来该技术转让给微软,也就是后来的微软拼音输入法。从windows95开始,系统就会自动安装该输入法,并在以后更高版本的windows中和Office办公软件都会集成最新的微软拼音输入法。n年之后,各个输入法的新秀(如搜狗和谷歌)也都采用了n元语法模型技术。

正是因为这么多的应用,语言模型的发明开启了自然语言处理的新时代

这里推荐几本自己看过,自以为觉得不错的书,也希望大家多多交流:

1:

1、《自然语言处理综论》英文版第二版

2、《统计自然语言处理基础》英文版

3、《用Python进行自然语言处理》,NLTK配套书

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • 本系列第三篇,承接前面的《浅谈机器学习基础》和《浅谈深度学习基础》。 自然语言处理绪论 什么是自然语言处理? 自然...
    我偏笑_NSNirvana阅读 17,513评论 2 68
  • ng-repeat 不知道循环什么列表长度,但是又需要单独处理第一个和最后一个循环的时候,** $index可能就...
    wuliJJ阅读 2,353评论 0 0
  • Scala 中 Type Class 实现的套路 什么是Type Class A typeclass is a s...
    大刀阅读 4,554评论 10 6
  • 今日得到 1.《荀子》这部书,思想不纯粹,立场不明确,论点伤感情,所以总是被边缘化。 ——把一本书看出自己的花来。...
    Pheeb阅读 106评论 0 0
  • 在那一次看到你, 就被你的神情吸引, ...
    少曦阅读 187评论 0 1