名词:
sampling bias 抽样偏差
overfitting 过拟合
data snooping 数据窥探
三个锦囊妙计
1、应该选择能够很好地解释已知数据并且十分简单的模型(奥卡姆剃刀原理(Occam’s Razor))
2、注意抽样偏差。例如 时间顺序的时候,多选用后面的数据做验证
3、不要偷看资料。
转自:https://blog.csdn.net/red_stone1/article/details/72870520
上节课我们讲了一个机器学习很重要的工具——Validation。我们将整个训练集分成两部分:Dtrain和Dval,一部分作为机器学习模型建立的训练数据,另一部分作为验证模型好坏的数据,从而选择到更好的模型,实现更好的泛化能力。这节课,我们主要介绍机器学习中非常实用的三个“锦囊妙计”。
一、Occam’s Razor
奥卡姆剃刀定律(Occam’s Razor),是由14世纪逻辑学家、圣方济各会修士奥卡姆的威廉(William of Occam,约1285年至1349年)提出。奥卡姆(Ockham)在英格兰的萨里郡,那是他出生的地方。他在《箴言书注》2卷15题说“切勿浪费较多东西去做用较少的东西同样可以做好的事情。” 这个原理称为“如无必要,勿增实体”(Entities must not be multiplied unnecessarily),就像剃刀一样,将不必要的部分去除掉。
Occam’s Razor反映到机器学习领域中,指的是在所有可能选择的模型中,我们应该选择能够很好地解释已知数据并且十分简单的模型。
上图就是一个模型选择的例子,左边的模型很简单,可能有分错的情况;而右边的模型非常复杂,所有的训练样本都分类正确。但是,我们会选择左边的模型,它更简单,符合人类直觉的解释方式。这样的结果带来两个问题:一个是什么模型称得上是简单的?另一个是为什么简单模型比复杂模型要好?
简单的模型一方面指的是简单的hypothesis h,简单的hypothesis就是指模型使用的特征比较少,例如多项式阶数比较少。简单模型另一方面指的是模型H包含的hypothesis数目有限,不会太多,这也是简单模型包含的内容。
其实,simple hypothesis h和simple model H是紧密联系的。如果hypothesis的特征个数是l,那么H中包含的hypothesis个数就是2l,也就是说,hypothesis特征数目越少,H中hypothesis数目也就越少。
所以,为了让模型简单化,我们可以一开始就选择简单的model,或者用regularization,让hypothesis中参数个数减少,都能降低模型复杂度。
那为什么简单的模型更好呢?下面从哲学的角度简单解释一下。机器学习的目的是“找规律”,即分析数据的特征,总结出规律性的东西出来。假设现在有一堆没有规律的杂乱的数据需要分类,要找到一个模型,让它的Ein=0,是很难的,大部分时候都无法正确分类,但是如果是很复杂的模型,也有可能将其分开。反过来说,如果有另一组数据,如果可以比较容易找到一个模型能完美地把数据分开,那表明数据本身应该是有某种规律性。也就是说杂乱的数据应该不可以分开,能够分开的数据应该不是杂乱的。如果使用某种简单的模型就可以将数据分开,那表明数据本身应该符合某种规律性。相反地,如果用很复杂的模型将数据分开,并不能保证数据本身有规律性存在,也有可能是杂乱的数据,因为无论是有规律数据还是杂乱数据,复杂模型都能分开。这就不是机器学习模型解决的内容了。所以,模型选择中,我们应该尽量先选择简单模型,例如最简单的线性模型。
二、Sampling Bias
首先引入一个有趣的例子:1948年美国总统大选的两位热门候选人是Truman和Dewey。一家报纸通过电话采访,统计人们把选票投给了Truman还是Dewey。经过大量的电话统计显示,投给Dewey的票数要比投个Truman的票数多,所以这家报纸就在选举结果还没公布之前,信心满满地发表了“Dewey Defeats Truman”的报纸头版,认为Dewey肯定赢了。但是大选结果公布后,让这家报纸大跌眼镜,最终Truman赢的了大选的胜利。
为什么会出现跟电话统计完全相反的结果呢?是因为电话统计数据出错还是投票运气不好?都不是。其实是因为当时电话比较贵,有电话的家庭比较少,而正好是有电话的美国人支持Dewey的比较多,而没有电话的支持Truman比较多。也就是说样本选择偏向于有钱人那边,可能不具有广泛的代表性,才造成Dewey支持率更多的假象。
这个例子表明,抽样的样本会影响到结果,用一句话表示“If the data is sampled in a biased way, learning will produce a similarly biased outcome.”意思是,如果抽样有偏差的话,那么学习的结果也产生了偏差,这种情形称之为抽样偏差Sampling Bias。
从技术上来说,就是训练数据和验证数据要服从同一个分布,最好都是独立同分布的,这样训练得到的模型才能更好地具有代表性。
三、Data Snooping
之前的课程,我们介绍过在模型选择时应该尽量避免偷窥数据,因为这样会使我们人为地倾向于某种模型,而不是根据数据进行随机选择。所以,Φ应该自由选取,最好不要偷窥到原始数据,这会影响我们的判断。
事实上,数据偷窥发生的情况有很多,不仅仅指我们看到了原始数据。什么意思呢?其实,当你在使用这些数据的任何过程,都是间接地偷看到了数据本身,然后你会进行一些模型的选择或者决策,这就增加了许多的model complexity,也就是引入了污染。
下面举个例子来说明。假如我们有8年的货比交易数据,我们希望从这些数据中找出规律,来预测货比的走势。如果选择前6年数据作为训练数据,后2年数据作为测试数据的话,来训练模型。现在我们有前20天的数据,根据之前训练的模型,来预测第21天的货比交易走势。
现在有两种训练模型的方法,如图所示,一种是使用前6年数据进行模型训练,后2年数据作为测试,图中蓝色曲线表示后2年的预测收益;另一种是直接使用8年数据进行模型训练,图中红色曲线表示后2年的预测收益情况。图中,很明显,使用8年数据进行训练的模型对后2年的预测的收益更大,似乎效果更好。但是这是一种自欺欺人的做法,因为训练的时候已经拿到了后2年的数据,用这样的模型再来预测后2年的走势是不科学的。这种做法也属于间接偷窥数据的行为。直接偷窥和间接偷窥数据的行为都是不科学的做法,并不能表示训练的模型有多好。
还有一个偷窥数据的例子,比如对于某个基准数据集D,某人对它建立了一个模型H1,并发表了论文。第二个人看到这篇论文后,又会对D,建立一个新的好的模型H2。这样,不断地有人看过前人的论文后,建立新的模型。其实,后面人选择模型时,已经被前人影响了,这也是偷窥数据的一种情况。也许你能对D训练很好的模型,但是可能你仅仅只根据前人的模型,成功避开了一些错误,甚至可能发生了overfitting或者bad generalization。所以,机器学习领域有这样一句有意思的话“If you torture the data long enough, it will confess.”所以,我们不能太“折磨”我们的数据了,否则它只能“妥协”了~哈哈。
在机器学习过程中,避免“偷窥数据”非常重要,但实际上,完全避免也很困难。实际操作中,有一些方法可以帮助我们尽量避免偷窥数据。第一个方法是“看不见”数据。就是说当我们在选择模型的时候,尽量用我们的经验和知识来做判断选择,而不是通过数据来选择。先选模型,再看数据。第二个方法是保持怀疑。就是说时刻保持对别人的论文或者研究成果保持警惕与怀疑,要通过自己的研究与测试来进行模型选择,这样才能得到比较正确的结论。
四、Power of Three
本小节,我们对16节课做个简单的总结,用“三的威力”进行概括。因为课程中我们介绍的很多东西都与三有关。
首先,我们介绍了跟机器学习相关的三个领域:
Data Mining
Artificial Intelligence
Statistics
我们还介绍了三个理论保证:
Hoeffding
Multi-Bin Hoeffding
VC
然后,我们又介绍了三种线性模型:
PLA/pocket
linear regression
logistic regression
同时,我们介绍了三种重要的工具:
Feature Transform
Regularization
Validation
还有我们本节课介绍的三个锦囊妙计:
Occam’s Razer
Sampling Bias
Data Snooping
最后,我们未来机器学习的方向也分为三种:
More Transform
More Regularization
Less Label
五、总结
本节课主要介绍了机器学习三个重要的锦囊妙计:Occam’s Razor, Sampling Bias, Data Snooping。并对《机器学习基石》课程中介绍的所有知识和方法进行“三的威力”这种形式的概括与总结,“三的威力”也就构成了坚固的机器学习基石。