【分析篇】:python基本统计特征函数解释

# 基本统计特征函数,data 为DataFrame 或者 Series
        
        # sum()
        # mean()
        # var() 样本方差
        # std() 计算数据样本的标准差
        # corr() Spearman(Person,kenall) 相关系数矩阵
            # S1.corr(S2,method = 'pearson') --> S1 和 S2 均为Series

D = pd.DataFrame([range(1,8),range(2,9)]) 
# 第一行为1~7,第二行为2~8
D.corr(method = 'pearson')
S1 = D.loc[0] # 提取第一行
S2 = D.loc[1] # 提取第二行
S1.corr(S2,method = 'pearson')

        # cov() 协方差矩阵 计算两个Series之间的协方差

import numpy as np
D = pd.DataFrame(np.random.randn(6.5)) # 产生6*5 随机矩阵
D.cov() #计算协方差矩阵

D[0].cov(D[1]) #计算第一列和第二类的协方差

        # describe(percentiles = [0.2,0.4,0.6,0.8]) 计算 0.2 0.4 。。。分位数

    # 拓展统计特征函数 Pandas

    # 累积计算
        # cumsum() 依次给出1,2,...,n个数的和
        # cumprod()  依次给出1,2,...,n个数的积
        # cummax()  依次给出1,2,...,n个数的最大值
        # cummin()  依次给出1,2,...,n个数的最小值
            # D 为DataFrame 或者 Series ,D.cumsum()
    # 滚动计算
        # rolling_sum() 计算样本数据量的总和(按列计算)
        # rolling_mean() 数据样本的均值
        # rolling_var() 计算数据样本的方差
        # rolling_std() 计算数据样本的标准差
        # rolling_corr() 计算数据样本的相关系数矩阵
        # rolling_cov() 计算协方差矩阵
            # 不是 D 为DataFrame 或者 Series 对象的方法
                #使用方法为 pd.rolling_mean(D,k) -->意思是每K列计算一次均值

D = pd.Series(range(0,20)) # 构造Series
D.sort(ascending = True)
D.cumsum()

pd.rolling_sum(D,2) #依次对相邻两项求和

参考资料:《Python数据分析与挖掘实战》

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容