2018-10-16 漫画算法:什么是外部排序?

转自: https://mp.weixin.qq.com/s/KYbYTNl9PfXK--bG96YZJg

来源:帅地(本文来自作者的投稿,其简介见末尾)

背景

西天取经的路上,一样上演着编程的乐趣.....

image
image
image
image
image
image

排序的时候我们可以选择快速排序或归并排序等算法。为了方便,我们把排序好的2G有序数据称之为有序子串吧。接着我们可以把两个小的有序子串合并成一个大的有序子串。

image

注意:读取的时候是每次读取一个int数,通过比较之后在输出。

按照这个方法来回合并,总共经过三次合并之后就可以得到8G的有序子串。

image
image
image

接下来把12个数据分成4份,然后排序成有序子串

image

然后把子串进行两两合并

image

输出哪个元素,就在那个元素所在的有序子串再次读入一个元素

image

继续

image

重复直到合并成一个包含6个int的有序子串

image

再把两个包含6个int的有序子串合并成一个包含12个int数据的最终有序子串

image
image

优化策略

image

解释下:例如对于数据2,我们把无序的12个数据分成有序的4个子串需要读写各一次,把2份3个有序子串合并成6个有序子串读写各一次;把2份6个有序子串合并从12个有序子串读写各一次,一共需要读写各3次。

image
image
image

多路归并

为了方便讲解,我们假设内存一共可以装4个int型数据

image
image
image
image
image
image
image.png

置换选择

image
image
image
image
image
image
image

例如我们可以从12个数据读取3个存到内存中,然后从内存中选出最小的那个数放进子串p1里;

之后再从在从剩余的9个数据读取一个放到内存中,然后再从内存中选出一个数放进子串p1里,这个数必须满足比p1中的其他数大,且在内存中尽量小

这样一直重复,直到内存中的数都比p1中的数小,这时p1子串存放结束,继续来p2子串的存放。例如(这时假设内存只能存放3个int型数据):

12个无序的int数据

image

读入3个到内存中,且选出一个最小的到子串p1

image

从内存中再次读取一个元素86

image

从内存中再次读取一个元素3

image

从内存中再次读取一个元素24

image

从内存中再次读取一个元素8

image

这个时候,已经没有符合要求的数了,且内存已满,进而用p2子串来存放,以此类推。

通过这种方法,p1子串存放了4个数据,而原来的那种方法p1子串只能存放3个数据。

image
image

从12个数据中读取3个数据,构建成一个最小堆,然后从堆顶选择一个数写入到p1中。

之后再从剩余的9个数中读取一个数,如果这个数比刚才那个写入到p1中的数大,则把这个数插入到最小堆中,重新调整最小堆结构,然后在堆顶选一个数写入到p1中。

否则,把这个数暂放在一边,暂时不处理。之后一样需要调整堆结构,从堆顶选择一个数写入到p1中。

这里说明一下,那个被放在一边的数是不能再放入p1中的了,因为它一定比p1中的数都要小,所以它会放在下一个子串中

看这些文字会让人头大,我画图解释下吧。

从12数据读取3个数据

image

构建最小堆,且选出目标数

image

读入下一个数86

image

读入下一个数3,比70小,暂放一边,不加入堆结构中

image

读入下一个数据24,比81小,不加入堆结构

image

读入下一个数据8,比86小,不加入堆结构。此时p1已经完成了,把那些刚才暂放一边的数重新构成一个堆,继续p2的存放。

image

以此类推...

最后生成的p2如下:

image
image
image
image
image

这种方法适合要排序的数据太多,以至于内存一次性装载不下。只能通过把数据分几次的方式来排序,我们也把这种方法称之为外部排序

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容