Python学习的第三天

#匿名函数

#结构

lambao x1,x2.... xn: 表达式
sum_num=lambda x1,x2: x1+x2
print(sum_num(2,3))

#参数可以是无限多个,但是列表只有一个

# name_info_list=[
#     ('张三', 4500),
#     ('李四', 6500),
#     ('王五', 7500),
#     ('赵六', 2500),
# ]
# name_info_list.sort(key=lambda x:x[1],reverse=True)
# print(name_info_list)
# stu_info = [
#   {"name":'zhangsan', "age":18},
#   {"name":'lisi',  "age":30},
#    {"name":'wangwu', "age":99},
#    {"name":'tiaqi', "age":3},
#  ]
# stu_info.sort(key=lambda i:i['age'])

列表推导式,列表解析个字典解析

之前我们使用普通for 创建列表

# li=[]
# for i in range(10):
#     li.append()
# print(i)
#
# #使用列表推导式
# #{表达式 for 临时变量 in可迭代对象 可以追加条件}
# print([i for i in range(10)])

列表解析

筛选出列表中的偶数

# li=[]
# for i in range(10):
#     if i%2==0:
#         li.append(i)
#         print(i)
#
# print({i for i in range(10) if i%2==0})

筛选出列表中大于0的数

from  random import randint
num_list=[randint(-10,10) for _ in range(10)]
print(num_list)
print([i for i in num_list if i>0])

字典解析

生成100个学生的成绩

stu_grades={'student{}'.format(i):randint(50,100) for i in range(1,101)}
print(stu_grades)
#筛选大于60分的所有学生
print(({k:v for k,v in stu_grades.items() if v>60}))

正、余弦曲线图

x=np.linspace(0,2*np.pi,num=100)
print(x)
y=np.sin(x)
cosy=np.cos(x)
plt.plot(x,y,color='g',linestyle='--')
plt.plot(x,cosy,color='r')
plt.xlabel('时间(s)')
plt.ylabel('电压(v)')
plt.title('欢迎来到Python')
plt.legend()
plt.show()

图像显示
U6FDIOM}ZMV(E9$LA`P{7K7.png

导入

from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import numpy as np

...

柱状图

# import  string
# from  random import randint
# #字母大写
# print(string.ascii_uppercase[0:6])
# #{'A','B','C' ...}
# x=['口红{}'.format(x) for x in string.ascii_uppercase[0:5]]
# y=[randint(200,500) for _ in range(5)]
# print(x)
# print(y)
# plt.xlabel('口红品牌')
# plt.ylabel('价格(元)')
# plt.bar(x,y)
# plt.show()

饼图

# from random import randint
# import string
# counts=[randint(3500,9000) for _ in range(6)]
# labels=['员工{}'.format(x)for x in string.ascii_lowercase[:6]]
# #距离圆心点的距离
# explode=[0.1,0,0,0,0,0]
# colors=['red','purple','blue','yellow','gray','green']
# plt.pie(counts,explode=explode,shadow=True, labels=labels,autopct = '%1.1f%%',colors=colors)
# plt.legend(loc=2)
# plt.axis('equal')
# plt.show()

散点图

#均值为0,标准差为1的正态分布数据
x=np.random.normal(0,1,10000)
y=np.random.normal(0,1,10000)
plt.scatter(x,y,alpha=0.1)
plt.show()

三国人物分析

import jieba
from wordcloud import WordCloud

1.读取小说内容

with open('./novel/threekingdom.txt', 'r', encoding='utf-8') as f:
 words=f.read()
 count={} #{'曹操':234,'zhouyu':56}
 excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
             "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
             "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知"}

2.分词

words_list=jieba.lcut(words)
#print(words_list)
for word in words_list:
    if len(word) <= 1:
         continue
    else:

        ...
   # 更新字典中的值
    #counts[word]=取出字典中原来键对应的值+1
#count[word]=count[word]+1
#字典中,get(k) 如果字典中没有这个键,返回NONE
        count[word]=count.get(word,0)+1
print(count)
for word in excludes:
    del count[word]

3.词语过滤,删除无关词,重复词

count['孔明']=count['孔明']+count['孔明曰']
count['玄德']=count['玄德']+count['玄德曰']+count['刘备']
count['关公']=count['关公']+count['云长']

4.排序

items=list(count.items())
print(items)
def sort_by_count(x):
    return x[1]
items.sort(key=sort_by_count,reverse=True)
#items.sort(key=lambda )
li=[] #{'kkkk'}
for i in range(10):
    #序列解包
    role,count=items[i]
    print(role,count)
    #_是告诉看代码的人,循环里面不需要使用临时变量
    for _ in range(count):
        li.append(role)

5.得出结论

text =' '.join(li)
WordCloud(
    font_path='msyh.ttc',
    background_color='white',
    width=800,
    height=600,
    collocations=False
).generate(text).to_file('TOP10.png')
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容