一、绘制词云
- 导入包
from wordcloud import WordCloud
import jieba
import imageio
mask = imageio.imread('./china.jpg') #要绘制词云的形状
- 读取小说内容
with open('./novel/threekingdom.txt', 'r', encoding='utf-8') as f:
words = f.read()
counts = {} # {‘曹操’:234,‘回寨’:56}
excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
"如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
"东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
"孔明曰","玄德曰","刘备","云长"}
- 分词
words_list = jieba.lcut(words)
# print(words_list)
for word in words_list:
if len(word) <= 1:
continue
else:
# 更新字典中的值
# counts[word] = 取出字典中原来键对应的值 + 1
# counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
# 字典。get(k) 如果字典中没有这个键 返回 NONE
counts[word] = counts.get(word, 0) + 1
- 词语过滤,删除无关词,重复词
counts['孔明'] = counts['孔明'] + counts['孔明曰']
counts['玄德'] = counts['玄德'] + counts['玄德曰'] +counts['刘备']
counts['关公'] = counts['关公'] +counts['云长']
for word in excludes:
del counts[word]
- 排序
items = list(counts.items())
print(items)
def sort_by_count(x):
return x[1]
items.sort(key=sort_by_count, reverse=True)
- 序列解包
li=[]
for i in range(10):
# 序列解包
role, count = items[i]
print(role, count)
for _ in range(count): #_是告诉看代码的人循环里不需要使用临时变量
li.append(role)
- 结论
text=' '.join(li)
WordCloud(
font_path='msyh.ttc',
background_color='white',
width=800,
height=600,
mask=mask,
#相邻两个值的重复
collocations=False
).generate(text).to_file('Top10.png')
二、匿名函数
匿名函数:lambda函数是一种快速定义单行的最小函数,可以用在任何需要用到函数的地方。
匿名函数返回值是一个函数对象,可以使用变量去接收这个对象。例如 x = lambda x,y:x*y ,代表x是一个计算两数想成的函数,调用时可以写成x(3,5)
匿名函数的优点:
1.使代码精简
2.有些只使用一次的函数,不用为其命名
3.让代码更容易理解
匿名函数的限制:
就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
匿名函数的好处:
即函数没有名字,不用担心函数名冲突,此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数。
格式:
lambda 参数:返回值
参数可以有无数个,但是表达式只能有一个
下例函数改为为匿名函数
name_info_list = [
('张三',4500),
('李四',9900),
('王五',2000),
('赵六',5500),
]
def sort_by_gz(x):
return x[1]
name_info_list.sort(key = sort_by_gz)
print('排序后', name_info_list)
修改之后
name_info_list = [
('张三',4500),
('李四',9900),
('王五',2000),
('赵六',5500),
]
name_info_list.sort(key=lambda x:x[1],reverse=True)
print(name_info_list)
三、列表推导式,列表解析和字典解析
推导式comprehensions(又称解析式),是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列的结构体。
1.列表推导式
之前我们创建列表是利用for循环
li=[]
for i in range(10):
li.append(i)
print(li)
列表推导式,也叫列表解析式,英文名称为list comprehension,可以使用非常简洁的方式来快速生成满足特定需求的列表,代码具有非常强的可读性。另外,Python的内部实现对列表推导式做了大量优化,可以保证很快的运行速度。
格式:[表达式 for 临时变量 in 可迭代对象 可以追加条件]
使用列表推导式
print([i for i in range(10)])
利用列表推导式只用一条语句就可以创建列表了。
列表解析
筛选出列表中所以的偶数
li=[]
for i in range(10):
if i % 2 ==0:
li.append(i)
print(li)
使用列表解析
print([i for i in range(10) if i%2==0])
筛选出列表中大于0的数(随机产生10个数)
from random import randint
num_list=[randint(-10,10) for _ in range(10)]
print(num_list)
print([i for i in num_list if i>0])
字典解析
生成100给学生的成绩
stu_grades={'student{}'.format(i):randint(50,100) for i in range (1,101)}
print(stu_grades)
筛选大于60分的所以学生
print({k:v for k,v in stu_grades.items() if v>60})
四、matplotlib库
matplotlib是Python编程语言及其数值数学扩展包 NumPy的可视化操作界面。它利用通用的图形用户界面工具包,如Tkinter, wxPython, Qt或GTK+,向应用程序嵌入式绘图提供了应用程序接口(API)。此外,matplotlib还有一个基于图像处理库(如开放图形库OpenGL)的pylab接口,其设计与MATLAB非常类似--尽管并不怎么好用。SciPy就是用matplotlib进行图形绘制。
1.曲线图
导入
from matplotlib import pyplot as plt
用100个点绘制正弦曲线图[0,2pi]
import numpy as np
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x=np.linspace(0,2*np.pi,num=100)
print(x)
y=np.sin(x)
plt.plot(x,y,color='g',linestyle='--',label='sin(x)')
cosy=np.cos(x)
plt.plot(x,cosy, color='r',label='cos(x)')
plt.xlabel('时间(s)')
plt.ylabel('电压(v)')
plt.title('欢迎来到python世界')
plt.legend()
plt.show()
2.柱状图
import string
from random import randint
# print(string.ascii_uppercase[0:6])
# ['A', 'B', 'C'...]
x = ['口红{}'.format(x) for x in string.ascii_uppercase[0:5]]
y = [randint(200, 500) for _ in range(5)]
print(x)
print(y)
plt.xlabel('口红品牌')
plt.ylabel('价格(元)')
plt.bar(x, y)
plt.show()
3.饼图
随机产生6个员工的工资范围在(3500, 9000),并画出饼图
from random import randint
import string
counts = [randint(3500, 9000) for _ in range(6)]
labels = ['员工{}'.format(x) for x in string.ascii_lowercase[:6] ]
# 距离圆心点距离
explode = [0.1,0,0, 0, 0,0]
colors = ['red', 'purple','blue', 'yellow','gray','green']
plt.pie(counts,explode = explode,shadow=True, labels=labels, autopct = '%1.1f%%',colors=colors)
plt.legend(loc=2)
plt.axis('equal')
plt.show()
4.散点图
均值为0,标准差为1的正太分布数据
x=np.random.normal(0,1,100)
y=np.random.normal(0,1,100)
plt.scatter(x,y,alpha=0.5)
plt.show()
五、将之前做好的三国top10人物以饼图的方式展示
from wordcloud import WordCloud
import jieba
import imageio
mask = imageio.imread('./china.jpg')
# 1.读取小说内容
with open('./novel/threekingdom.txt', 'r', encoding='utf-8') as f:
words = f.read()
counts = {} # {‘曹操’:234,‘回寨’:56}
excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
"如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
"东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
"孔明曰","玄德曰","刘备","云长"}
# 2. 分词
words_list = jieba.lcut(words)
# print(words_list)
for word in words_list:
if len(word) <= 1:
continue
else:
# 更新字典中的值
# counts[word] = 取出字典中原来键对应的值 + 1
# counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
# 字典。get(k) 如果字典中没有这个键 返回 NONE
counts[word] = counts.get(word, 0) + 1
print(len(counts))
# 3. 词语过滤,删除无关词,重复词
counts['孔明'] = counts['孔明'] + counts['孔明曰']
counts['玄德'] = counts['玄德'] + counts['玄德曰'] +counts['刘备']
counts['关公'] = counts['关公'] +counts['云长']
for word in excludes:
del counts[word]
# 4.排序 [(), ()]
items = list(counts.items())
print(items)
# def sort_by_count(x):
# return x[1]
# items.sort(key=sort_by_count, reverse=True)
items.sort(key=lambda i: i[1], reverse=True)
li=[]
peo_li=[]
for i in range(10):
# 序列解包
role, count = items[i]
a={'name':'','count':0}
a['name']=role
a['count']=count
peo_li.append(a)
print(role, count)
for _ in range(count): #_是告诉看代码的人循环里不需要使用临时变量
li.append(role)
# 5得出结论
text=' '.join(li)
WordCloud(
font_path='msyh.ttc',
background_color='white',
width=800,
height=600,
mask=mask,
#相邻两个值的重复
collocations=False
).generate(text).to_file('Top10.png')
#用饼图显示人物
from random import randint
import string
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
counts = []
labels = []
for i in range(len(peo_li)):
counts.append(peo_li[i]['count'])
labels.append(peo_li[i]['name'])
# 距离圆心点距离
explode = [0.1, 0, 0, 0, 0, 0,0,0,0,0]
#colors = ['red', 'purple', 'blue', 'yellow', 'gray', 'green']
plt.pie(counts, explode=explode, shadow=True, labels=labels, autopct = '%1.1f%%')
plt.legend(loc=2)
plt.axis('equal')
plt.show()
练习:将红楼梦的top10人物绘制饼图
from wordcloud import WordCloud
import jieba
import imageio
mask = imageio.imread('./china.jpg')
# 1.读取小说内容
with open('./novel/all.txt', 'r', encoding='utf-8') as f:
words = f.read()
#print(words)
counts = {}
excludes = {"什么", "一个", "我们", "你们", "如今", "说道", "知道", "起来", "这里",
"出来", "众人", "那里", "自己", "一面", "只见", "太太", "两个", "没有",
"怎么", "不是", "不知", "这个", "听见", "这样", "进来", "咱们", "就是",
"老太太", "东西", "告诉", "回来", "只是", "大家", "姑娘", "奶奶", "凤姐儿","分节"}
# 2. 分词
words_list = jieba.lcut(words)
for word in words_list:
if len(word) <= 1:
continue
else:
# 更新字典中的值
# counts[word] = 取出字典中原来键对应的值 + 1
# counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
# 字典。get(k) 如果字典中没有这个键 返回 NONE
counts[word] = counts.get(word, 0) + 1
print(len(counts))
# 3. 词语过滤,删除无关词,重复词
counts['贾母'] = counts['贾母'] + counts['老太太']
counts['宝钗'] = counts['宝钗'] + counts['薛宝钗']
counts['凤姐'] = counts['凤姐儿'] + counts['王熙凤'] +counts['凤姐']
counts['宝玉'] = counts['贾宝玉'] +counts['宝玉']
counts['王夫人'] = counts['王夫人'] + counts['太太']
counts['黛玉'] = counts['黛玉'] + counts['林黛玉']
counts['贾政']=counts['贾政']+counts['老爷']
for word in excludes:
del counts[word]
# 4.排序 [(), ()]
items = list(counts.items())
#print(items)
items.sort(key=lambda i: i[1], reverse=True)
li=[]
peo_li=[]
for i in range(10):
# 序列解包
role, count = items[i]
a={'name':'','count':0}
a['name']=role
a['count']=count
peo_li.append(a)
print(role, count)
for _ in range(count): #_是告诉看代码的人循环里不需要使用临时变量
li.append(role)
# 5得出结论
text=' '.join(li)
WordCloud(
font_path='msyh.ttc',
background_color='white',
width=800,
height=600,
mask=mask,
#相邻两个值的重复
collocations=False
).generate(text).to_file('红楼Top10.png')
#用饼图显示人物
from random import randint
import string
from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
counts = []
labels = []
for i in range(len(peo_li)):
counts.append(peo_li[i]['count'])
labels.append(peo_li[i]['name'])
# 距离圆心点距离
explode = [0.1, 0, 0, 0, 0, 0,0,0,0,0]
#colors = ['red', 'purple', 'blue', 'yellow', 'gray', 'green']
plt.pie(counts, explode=explode, shadow=True, labels=labels, autopct = '%1.1f%%')
plt.legend(loc=2)
plt.axis('equal')
plt.show()