Python学习的第三天

import jieba
from wordcloud import WordCloud
import imageio
# 1.读取小说内容
with open('./novel/threekingdom.txt', 'r', encoding='utf-8') as f:
    words = f.read()
    counts = {} # counts = {'姓名':出现频率}
    excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
                "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
                "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
                "孔明曰", "玄德曰", "刘备", "云长"}
    # 2.分词
    words_list = jieba.lcut(words)
    print(words_list)
    for word in words_list:
            if len(word) <= 1:
                continue
            else:
                # 更新字典中的值
                # counts[word] = 取出字典中原来键对应的值 + 1
                # counts[word] = counts[word] + 1
                # 字典.get(k)  如果字典中没有这个键 ,(返回NONE)添加一个默认值:0
                counts[word] = counts.get(word, 0) + 1
    print(counts)
    # 3.词语过滤,删除无关词,重复词
    counts['孔明'] = counts['孔明'] + counts['孔明曰']
    counts['玄德'] = counts['玄德'] + counts['玄德曰'] + counts['刘备']
    counts['关公'] = counts['关公'] + counts['云长']
    for word in excludes:
        del counts[word]
    # 4.排序[(), ()]
    items = list(counts.items())
    print(items)

    # def sort_by_count(x):
    #     return x[1]
    # items.sort(key=sort_by_count, reverse=True)
    # 用列表解析排序
    items.sort(key=lambda x: x[1], reverse=True)
    # print(items)
    li = []  # ['孔明', '孔明', '孔明',..., '曹操'...]
    for i in range(10):
        # 序列解包
        role, count = items[i]
        print(role, count)
        # _ 是告诉看代码的人,循环里面不需要使用临时变量
        for _ in range(count):
            li.append(role)
        # 得出结论
        # 绘制中文词云,在WordCloud()里面设置参数
        text = ' '.join(li)
        wc = WordCloud(
            font_path='msyh.ttc',
            background_color='white',
            width=800,
            height=600,
            # 相邻两个重复词之间的匹配,关掉
            collocations=False
        ).generate(text)
        wc.to_file('三国TOP10人物词云.png')
三国TOP10人物词云.png

2、匿名函数 lambda

结构: lambda x1, x2, ...xn: 表达式
eg:

sum_num = lambda x1, x2: x1+x2
print(sum_num(2, 3))
# 结果:5

参数可以是无限多个,但是表达式只有一个
eg1:从大到小排序

name_info_list = [
    ('张三', 4500),
    ('李四', 9500),
    ('王五', 2000),
    ('赵六', 5500),
]
name_info_list.sort(key=lambda x: x[1], reverse=True)
print(name_info_list)
# 结果:[('李四', 9500), ('赵六', 5500), ('张三', 4500), ('王五', 2000)]

eg2:从小到大排序

stu_info = [
    {"name": 'zhangsan', "age": 18},
    {"name": 'lisi', "age": 30},
    {"name": 'wangwu', "age": 99},
    {"name": 'tianqi', "age": 3},
]
stu_info.sort(key=lambda i: i['age'])
print(stu_info)
# 结果:[{'name': 'tianqi', 'age': 3}, {'name': 'zhangsan', 'age': 18}, {'name': 'lisi', 'age': 30}, {'name': 'wangwu', 'age': 99}]

3、列表推导式,列表解析和字典解析

1、列表推导式

之前用普通for 创建列表

li = []
for i in range(10):
    li.append(i)
print(li)
# 结果:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

使用列表推导式创建列表
结构:[表达式 for 临时变量 in 可迭代对象 可以追加条件]

print([i for i in range(10)])
# 结果:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2、 列表解析

普通筛选出列表中所有的偶数

# 筛选出列表中所有的偶数
li = []
for i in range(10):
    if i % 2 == 0:
        li.append(i)
print(li)
# 结果:[0, 2, 4, 6, 8]

使用列表解析筛选偶数

print([i for i in range(10) if i % 2 == 0])
# 结果:[0, 2, 4, 6, 8]

筛选出列表中 大于0 的数

# 随机生成(-10, 10)的10个数
from random import randint
num_list = [randint(-10, 10) for _ in range(10)]
print(num_list)
# 输出num_list中 大于0 的数
print([i for i in num_list if i > 0])
# 结果:[-5, -1, -4, -8, -8, -1, -8, 7, 10, -4]
#      [7, 10]

4、Matplotlib

导入

from matplotlib import pyplot as plt

使用100个点 绘制[0, 2π]正余弦曲线图

from matplotlib import pyplot as plt
import numpy as np
# 处理中文乱码
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 使用100个点  绘制[0, 2π]正弦曲线图
# .linspace 左闭右闭区间的等差数列
x = np.linspace(0, 2*np.pi, num=100)
print(x)
y = np.sin(x)
# 正弦和余弦在同一坐标系下
cosy = np.cos(x)
plt.plot(x, y, color='g', linestyle='--')
plt.plot(x, cosy, color='r')
plt.xlabel('时间(s)')
plt.ylabel('电压(v)')
plt.title('欢迎来到python世界')
# 图例
plt.legend()
plt.show()

结果:


image.png

柱状图

# 切片
# print(string.ascii_uppercase[0: 6])
# 结果:ABCDEF

# 柱状图
from matplotlib import pyplot as plt
# 处理中文乱码
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = ['口红{}'.format() for x in string.ascii_uppercase[:5]]
y = [randint(200, 500) for _ in range(5)]
print(x)
print(y)
plt.xlabel('口红品牌')
plt.ylabel('价格(元)')
plt.bar(x, y)
plt.show()

结果:


image.png

饼图

# 饼图
from matplotlib import pyplot as plt
# 处理中文乱码
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
from random import randint
counts = [randint(3500, 9000) for _ in range(6)]
labels = ['员工{}'.format(x) for x in string.ascii_lowercase[:6]]
# 距离圆心点距离
explode = [0.1, 0, 0, 0, 0, 0]
color = ['red', 'purple', 'blue', 'yellow', 'gray', 'green']
plt.pie(counts, explode=explode, shadow=True, labels=labels, autopct='%1.1f%%', colors=color)
plt.axis('equal')
plt.legend(loc=2)
plt.show()

结果:


image.png

散点图

from matplotlib import pyplot as plt
import numpy as np
# 均值为 0 标准差为 1 的正态分布数据
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
plt.scatter(x, y)
plt.show()

结果:


image.png

有透明度的散点图

from matplotlib import pyplot as plt
import numpy as np
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
# alpha透明度
plt.scatter(x, y, alpha=0.1)
plt.show()

结果:


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • 一、绘制词云 导入包 读取小说内容 分词 词语过滤,删除无关词,重复词 排序 序列解包 结论 二、匿名函数 匿名函...
    喵青禾阅读 328评论 0 0
  • 三国TOP10人物分析 运行结果: 匿名函数 ①结构:lambda x1,x2...xn:表达式 注:参数可以是无...
    Amieee阅读 341评论 0 0
  • 1. 词云WordCloud——续 ①Python中使用open内置函数进行文件读取②利用函数jieba.lcut...
    婉儿吖阅读 382评论 0 0
  • 1.三国演义Top10人物分析 效果图 2.匿名函数(lambda) lambda x1, x2, ...xn: ...
    神坑少女7阅读 160评论 0 0
  • 三国演义Top10 人物词云绘制 红楼梦 Top10 人物词云绘制 匿名函数 结构: lambda x1, x2,...
    可可西里_4160阅读 324评论 0 0