[net]
# Testing
#batch=1 #测试时,batch和subdivisions都必须设置为1
#subdivisions=1
# Training
batch=64 #batch与一般意义上的batch概念稍有出入,在这里表示网络积累多少个样本后进行一次反向传播.
subdivisions=16 #subdivisions表示将一个batch的图片分subdivisions次完成网络的前向传播.
在Darknet中,batch和sub是结合使用的,例如这儿的batch=64,sub=16表示训练的过
程中将一次性加载64张图片进内存,然后分16次完成前向传播,意思是每次4张,前向传播的循环过程中
累加loss求平均,待64张图片都完成前向传播后,再一次性后传更新参数
sub一般设置16,不能太大或太小,且为8的倍数,
batch的值可以根据显存占用情况动态调整,一次性加减sub大小即可,通常情况下batch越大越好,还需
注意一点,在测试的时候batch和sub都设置为1,避免发生神秘错误!
width=608 #网络输入的宽
height=320 #网络输入的高
width和height一定要为32的倍数,否则不能加载网络.
width也可以设置为不等于height,通常情况下,width和height的值越大,对于小目标的识别
效果越好,但受到了显存的限制,读者可以自行尝试不同组合.
channels=1 #网络输入的通道数
momentum=0.9 #动量梯度下降优化方法中的动量参数
decay=0.0005 #权重衰减正则项,用于防止过拟合
angle=0 #数据增强参数,通过旋转角度来生成更多训练样本
saturation = 1.5 #数据增强参数,通过调整饱和度来生成更多训练样本
exposure = 1.5 #数据增强参数,通过调整曝光量来生成更多训练样本
hue=.1 #数据增强参数,通过调整色调来生成更多训练样本
learning_rate=0.001 #学习率,决定着权值更新的速度
学习率决定着权值更新的速度,设置得太大会使结果越过最优值,太小会使下降速度过慢。
如果仅靠人为干预调整参数,需要不断修改学习率。刚开始训练时可以将学习率设置的高一点,
而一定轮数之后,将其减小在训练过程中,一般根据训练轮数设置动态变化的学习率。
刚开始训练时:学习率以 0.01 ~ 0.001 为宜。一定轮数过后:逐渐减缓。
接近训练结束:学习速率的衰减应该在100倍以上。
学习率的调整参考https://blog.csdn.net/qq_33485434/article/details/80452941
学习率调整一定不要太死,实际训练过程中根据loss的变化和其他指标动态调整,手动ctrl+c结
束此次训练后,修改学习率,再加载刚才保存的模型继续训练即可完成手动调参,调整的依据是根据训练
日志来,如果loss波动太大,说明学习率过大,适当减小,变为1/5,1/10均可,如果loss几乎不变,
可能网络已经收敛或者陷入了局部极小,此时可以适当增大学习率,注意每次调整学习率后一定要训练久
一点,充分观察,调参是个细活,慢慢琢磨
一点小说明:实际学习率与GPU的个数有关,例如你的学习率设置为0.001,如果你有4块GPU,那
真实学习率为0.001/4
burn_in=1000 #在迭代次数小于burn_in时,其学习率的更新为一种方式,大于burn_in时,采用policy的更新方式
max_batches = 10004 #训练迭代次数达到max_batches后停止学习,跑完一个batch为一次
policy=steps #学习率调整的策略constant, steps, exp, poly, step, sig, RANDOM,constant等方式
steps=8000,9000 #steps和scale是设置学习率的变化
scales=.1,.1 #迭代到8000次时,学习率衰减十倍,9000次时,学习率又会在前一个学习率的基础上衰减十倍
[convolutional] #卷积层
batch_normalize=1 #是否进行BN,batch_normalize
filters=32 #卷积核个数,也就是该层的输出通道数
size=3 #卷积核大小
stride=1 #卷积步长
pad=1 #pad边缘补像素
activation=leaky #网络层激活函数,Leaky ReLU
............
...........
[convolutional] #YOLO层前面一层卷积层配置说明
size=1
stride=1
pad=1
filters=21 #YOLO层前面一层卷积层
filters=num(预测框个数)*(classes+5),5的意义是4个坐标加一个置信率,论文中的tx,ty,tw,th,
c,classes为类别数,COCO为80,num表示YOLO中每个cell预测的框的个数,YOLOV3中为3
自己使用时,此处的值一定要根据自己的数据集进行更改,例如你识别4个类,则:
filters=3*(4+5)=27,三个fileters都需要修改,切记
activation=linear #线性激活,也就是没用激活函数,原样输出
[yolo] #YOLO层配置说明
mask = 0,1,2 #使用anchor的索引,0,1,2表示使用下面定义的anchors中的前三个anchor
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=2 #类别数目
num=9 #每个grid cell总共预测num个box,和anchors的数量一致。当想要使用更多anchors时需要调大num
jitter=.3 #数据增强手段,此处jitter为随机调整宽高比的范围
ignore_thresh = .7 #参与计算的IOU阈值大小
参与计算的IOU阈值大小.当预测的检测框与ground true的IOU大于ignore_thresh的时候,参与
loss的计算,否则,检测框的不参与损失计算。
理解:目的是控制参与loss计算的检测框的规模,当ignore_thresh过于大,接近于1的时候,那么参与
检测框回归loss的个数就会比较少,同时也容易造成过拟合;而如果ignore_thresh设置的过于小,那么
参与计算的会数量规模就会很大。同时也容易在进行检测框回归的时候造成欠拟合。
参数设置:一般选取0.5-0.7之间的一个值,之前的计算基础都是小尺度(13*13)用的是0.7,
(26*26)用的是0.5。这次先将0.5更改为0.7。参考:https://www.e-learn.cn/content/qita/804953
truth_thresh = 1
random=1 #为1打开随机多尺度训练,为0则关闭
提示:当打开随机多尺度训练时,前面设置的网络输入尺寸width和height其实就不起作用了,width
会在320到608之间随机取值,且width=height,每10轮随机改变一次,一般建议可以根据自己需要修改
随机尺度训练的范围,这样可以增大batch,读者自行尝试!
几个尺寸说明
(1)batch_size:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batch_size个样本训练;
(2)iteration:1个iteration等于使用batchsize个样本训练一次;
(3)epoch:1个epoch等于使用训练集中的全部样本训练一次;
训练log中各参数的意义
Region Avg IOU:平均的IOU,代表预测的bounding box和ground truth的交集与并集之比,期望该值趋近于1。
Class:是标注物体的概率,期望该值趋近于1.
Obj:期望该值趋近于1.
No Obj:期望该值越来越小但不为零.
Avg Recall:期望该值趋近1
avg:平均损失,期望该值趋近于0
参考:
yolov3 darknet cfg配置文件参数详解
YOLOV3实战4:Darknet中cfg文件说明和理解
【YOLO】YOLO网络中参数的解读
YOLOv2调参总结