Pandas数据分析包

Pandas是面板数据(Panel Data)的简写。它是Python最强大的数据分析和探索工具,因金融数据分析工具而开发,支持类似SQL的数据增删改查,支持时间序列分析,灵活处理缺失数据。

pandas的数据结构

  • Series
    Series是一维标记数组,可以存储任意数据类型,如整型、字符串、浮点型和Python对象等,轴标一般指索引。Series的字符串表现形式为:索引在左边,值在右边。
    Series、Numpy中的一维Array、Python基本数据结构List区别:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。
# -*- coding: utf-8 -*- 

from pandas import Series

print('用数组生成Series')
obj = Series([4, 7, -5, 3])
print(obj)
print(obj.values)
print(obj.index)

print('指定Series的index')
obj2 = Series([4, 7, -5, 3], index = ['d', 'b', 'a', 'c'])
print(obj2)
print(obj2.index)
print(obj2['a'])
obj2['d'] = 6
print(obj2[['c', 'a', 'd']])
print(obj2[obj2 > 0])  # 找出大于0的元素
print('b' in obj2) # 判断索引是否存在
print('e' in obj2)

print('使用字典生成Series')
sdata = {'Ohio':45000, 'Texas':71000, 'Oregon':16000, 'Utah':5000}
obj3 = Series(sdata)
print(obj3)

print('使用字典生成Series,并额外指定index,不匹配部分为NaN。')
states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = Series(sdata, index = states)
print(obj4)

print('Series相加,相同索引部分相加。')
print(obj3 + obj4)

print('指定Series及其索引的名字')
obj4.name = 'population'
obj4.index.name = 'state'
print(obj4)

print('替换index')
obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
print(obj)

  • DateFrame
    DataFrame是二维标记数据结构,列可以是不同的数据类型。它是最常用的pandas对象,像Series一样可以接收多种输入:lists、dicts、series和DataFrame等。初始化对象时,除了数据还可以传index和columns这两个参数。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。
    注意:
    (1) 在pandas中用函数 isnull 和 notnull 来检测数据丢失:pd.isnull(a)、pd.notnull(b)。
    Series也提供了这些函数的实例方法:a.isnull()。
    (2) Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。如:Concat、Merge (类似于SQL类型的合并)、Append (将一行连接到一个DataFrame上)。
    (3) DataFrame中常常会出现重复行,DataFrame的duplicated方法返回一个布尔型Series,表示各行是否是重复行;还有一个drop_duplicated方法,它返回一个移除了重复行的DataFrame。
    常用DateFrame的初始化方法
初始化
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import Series, DataFrame

print('用字典生成DataFrame,key为列的名字。')
data = {'state':['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
        'year':[2000, 2001, 2002, 2001, 2002],
        'pop':[1.5, 1.7, 3.6, 2.4, 2.9]}
print(DataFrame(data))
print(DataFrame(data, columns = ['year', 'state', 'pop'])) # 指定列顺序

print('指定索引,在列中指定不存在的列,默认数据用NaN。')
frame2 = DataFrame(data,
                    columns = ['year', 'state', 'pop', 'debt'],
                    index = ['one', 'two', 'three', 'four', 'five'])
print(frame2)
print(frame2['state'])
print(frame2.year)#访问的不同方式
print(frame2.ix['three'])
frame2['debt'] = 16.5 # 修改一整列
print(frame2)
frame2.debt = np.arange(5)  # 用numpy数组修改元素
print(frame2)

print('用Series指定要修改的索引及其对应的值,没有指定的默认数据用NaN。')
val = Series([-1.2, -1.5, -1.7], index = ['two', 'four', 'five'])
frame2['debt'] = val
print(frame2)

print('赋值给新列')
frame2['eastern'] = (frame2.state == 'Ohio')  # 如果state等于Ohio为True
print(frame2)
print(frame2.columns)
print

print('DataFrame转置')
pop = {'Nevada':{2001:2.4, 2002:2.9},
        'Ohio':{2000:1.5, 2001:1.7, 2002:3.6}}
frame3 = DataFrame(pop)
print(frame3)
print(frame3.T)

print('指定索引顺序,以及使用切片初始化数据。')
print(DataFrame(pop, index = [2001, 2002, 2003]))
pdata = {'Ohio':frame3['Ohio'][:-1], 'Nevada':frame3['Nevada'][:2]}
print(DataFrame(pdata))

print('指定索引和列的名称')
frame3.index.name = 'year'
frame3.columns.name = 'state'
print(frame3)
print(frame3.values)
print(frame2.values)

import numpy as np
import pandas as pd
import sys
from pandas import Series, DataFrame, Index

print('获取index')
obj = Series(range(3), index = ['a', 'b', 'c'])
index = obj.index
print(index[1:])
try:
    index[1] = 'd'  # index对象read only
except:
    print(sys.exc_info()[0])

print('使用Index对象')
index = Index(np.arange(3))
obj2 = Series([1.5, -2.5, 0], index = index)
print(obj2)
print(obj2.index is index)

print('判断列和索引是否存在')
pop = {'Nevada':{20001:2.4, 2002:2.9},
        'Ohio':{2000:1.5, 2001:1.7, 2002:3.6}}
frame3 = DataFrame(pop)
print(frame3)
print('Ohio' in frame3.columns)
print('2003' in frame3.index)

pandas中主要的index对象

index

Index的方法和属性

method1
method2

基本功能 重新索引

• 创建一个适应新索引的新对象,该Series的reindex将会根据新索引进行重排。如果某个索引值当前不存在,就引入缺失值
• 对于时间序列这样的有序数据,重新索引时可能需要做一些插值处理。method选项即可达到此目的。

reindex参数
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import DataFrame, Series

print('重新指定索引及顺序')
obj = Series([4.5, 7.2, -5.3, 3.6], index = ['d', 'b', 'a', 'c'])
print(obj)
obj2 = obj.reindex(['a', 'b', 'd', 'c', 'e'])
print(obj2)
print(obj.reindex(['a', 'b', 'd', 'c', 'e'], fill_value = 0))  # 指定不存在元素的默认值

print('重新指定索引并指定填元素充方法')
obj3 = Series(['blue', 'purple', 'yellow'], index = [0, 2, 4])
print(obj3)
#ffill用前一行相同列的数值填充
print(obj3.reindex(range(6), method = 'ffill'))

print('对DataFrame重新指定索引')
frame = DataFrame(np.arange(9).reshape(3, 3),
                  index = ['a', 'c', 'd'],
                  columns = ['Ohio', 'Texas', 'California'])
print(frame)
frame2 = frame.reindex(['a', 'b', 'c', 'd'])
print(frame2)
print

print('重新指定column')
states = ['Texas', 'Utah', 'California']
print(frame.reindex(columns = states))

print('对DataFrame重新指定索引并指定填元素充方法')
print(frame.reindex(index = ['a', 'b', 'c', 'd'],
                    method = 'ffill',
                    columns = states))
print(frame.ix[['a', 'b', 'd', 'c'], states])

丢弃某些项
丢弃某条轴上的一个或多个项很简单,只要有一个索引数组或列表即可。由于需要执行一些数据整理和集合逻辑,所以drop方法返回的是一个在指定轴上删除了指定值的新对象

import numpy as np
from pandas import Series, DataFrame

print('Series根据索引删除元素')
obj = Series(np.arange(5.), index = ['a', 'b', 'c', 'd', 'e'])
new_obj = obj.drop('c')
print(new_obj)
print(obj.drop(['d', 'c']))

print('DataFrame删除元素,可指定索引或列。')
data = DataFrame(np.arange(16).reshape((4, 4)),
                  index = ['Ohio', 'Colorado', 'Utah', 'New York'],
                  columns = ['one', 'two', 'three', 'four'])
print(data)
print(data.drop(['Colorado', 'Ohio']))
print(data.drop('two', axis = 1))
print(data.drop(['two', 'four'], axis = 1))

索引、选取、过滤

  • Series索引(obj[...])的工作方式类似于NumPy数组的索引,只不过Series的索引值不只是整数。
  • 利用标签的切片运算与普通的Python切片运算不同,其末端是包含的(inclusive)。
  • 对DataFrame进行索引其实就是获取一个或多个列
  • 为了在DataFrame的行上进行标签索引,引入了专门的索引字段ix。
DataFrame索引
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import Series, DataFrame

print('Series的索引,默认数字索引可以工作。')
obj = Series(np.arange(4.), index = ['a', 'b', 'c', 'd'])
print(obj['b'])
print(obj[3])
print(obj[[1, 3]])
print(obj[obj < 2])

print('Series的数组切片')
print(obj['b':'c'] ) # 闭区间
obj['b':'c'] = 5
print(obj)

print('DataFrame的索引')
data = DataFrame(np.arange(16).reshape((4, 4)),
                  index = ['Ohio', 'Colorado', 'Utah', 'New York'],
                  columns = ['one', 'two', 'three', 'four'])
print(data)
print(data['two']) # 打印列
print(data[['three', 'one']])
print(data[:2])
print(data.ix['Colorado', ['two', 'three']]) # 指定索引和列
print(data.ix[['Colorado', 'Utah'], [3, 0, 1]])
print(data.ix[2]) # 打印第2行(从0开始)
print(data.ix[:'Utah', 'two']) # 从开始到Utah,第2列。

print('根据条件选择')
print(data[data.three > 5])
print(data < 5)  # 打印True或者False
data[data < 5] = 0
print(data)

算术运算和数据对齐
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import Series, DataFrame

print('加法')
s1 = Series([7.3, -2.5, 3.4, 1.5], index = ['a', 'c', 'd', 'e'])
s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index = ['a', 'c', 'e', 'f', 'g'])
print(s1)
print(s2)
print(s1 + s2)

print('DataFrame加法,索引和列都必须匹配。')
df1 = DataFrame(np.arange(9.).reshape((3, 3)),
                columns = list('bcd'),
                index = ['Ohio', 'Texas', 'Colorado'])
df2 = DataFrame(np.arange(12).reshape((4, 3)),
                columns = list('bde'),
                index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print(df1)
print(df2)
print(df1 + df2)

print('数据填充')
df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns = list('abcd'))
df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns = list('abcde'))
print(df1)
print(df2)
print(df1.add(df2, fill_value = 0))
print(df1.reindex(columns = df2.columns, fill_value = 0))

print('DataFrame与Series之间的操作')
arr = np.arange(12.).reshape((3, 4))
print(arr)
print(arr[0])
print(arr - arr[0])
frame = DataFrame(np.arange(12).reshape((4, 3)),
                  columns = list('bde'),
                  index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
series = frame.ix[0]
print(frame)
print(series)
print(frame - series)
series2 = Series(range(3), index = list('bef'))
print(frame + series2)
series3 = frame['d']
print(series3)
print(frame.sub(series3, axis = 0))  # 按列减

函数应用和映射

  • numpy的ufuncs(元素级数组方法)
  • DataFrame的apply方法
  • 对象的applymap方法(因为Series有一个应用于元素级的map方法)
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import Series, DataFrame

print('函数')
frame = DataFrame(np.random.randn(4, 3),
                  columns = list('bde'),
                  index = ['Utah', 'Ohio', 'Texas', 'Oregon'])
print(frame)
print(np.abs(frame))

print('lambda以及应用')
f = lambda x: x.max() - x.min()
#列的最大值减去最小值
print(frame.apply(f))
#行的最大值减去最小值
print(frame.apply(f, axis = 1))
def f(x):
    return Series([x.min(), x.max()], index = ['min', 'max'])
print(frame.apply(f))

print('applymap和map')
_format = lambda x: '%.2f' % x
print(frame.applymap(_format))
print(frame['e'].map(_format))

排序和排名

  • 对行或列索引进行排序
  • 对于DataFrame,根据任意一个轴上的索引进行排序
  • 可以指定升序降序
  • 按值排序
  • 对于DataFrame,可以指定按值排序的列
  • rank函数
# -*- coding: utf-8 -*- 

import numpy as np
from pandas import Series, DataFrame

print('根据索引排序,对于DataFrame可以指定轴。')
obj = Series(range(4), index = ['d', 'a', 'b', 'c'])
print(obj.sort_index())
frame = DataFrame(np.arange(8).reshape((2, 4)),
                  index = ['three', 'one'],
                  columns = list('dabc'))
print(frame.sort_index())
print(frame.sort_index(axis = 1))
print(frame.sort_index(axis = 1, ascending = False)) # 降序

print('根据值排序')
obj = Series([4, 7, -3, 2])
print(obj.sort_values()) # order已淘汰

print('DataFrame指定列排序')
frame = DataFrame({'b':[4, 7, -3, 2], 'a':[0, 1, 0, 1]})
print(frame)
print(frame.sort_values(by = 'b')) # sort_index(by = ...)已淘汰
print(frame.sort_values(by = ['a', 'b']))

print('rank,求排名的平均位置(从1开始)')
obj = Series([7, -5, 7, 4, 2, 0, 4])
# 对应排名:-5(1), 0(2), 2(3), 4(4), 4(5), 7(6), 7(7)
#rank 7为(6+7)/2
print(obj.rank())
print(obj.rank(method = 'first'))  # 去第一次出现,不求平均值。
print(obj.rank(ascending = False, method = 'max')) # 逆序,并取最大值。所以-5的rank是7.
frame = DataFrame({'b':[4.3, 7, -3, 2],
                  'a':[0, 1, 0, 1],
                  'c':[-2, 5, 8, -2.5]})
print(frame)
print(frame.rank(axis = 1))
print('重复的索引')
obj = Series(range(5), index = ['a', 'a', 'b', 'b', 'c'])
print(obj.index.is_unique) # 判断是非有重复索引
print(obj['a'].ix[0])
print(obj.b.ix[1])
df = DataFrame(np.random.randn(4, 3), index = ['a', 'a', 'b', 'b'])
print(df)
print(df.ix['b'].ix[0])
print(df.ix['b'].ix[1])

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。
比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

常用方法选项
常用描述和汇总统计函数1
常用描述和汇总统计函数2
import numpy as np
from pandas import Series, DataFrame

print('求和')
df = DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]],
              index = ['a', 'b', 'c', 'd'],
              columns = ['one', 'two'])
print(df)
print(df.sum())  # 按列求和
print(df.sum(axis = 1))  # 按行求和

print('平均数')
print(df.mean(axis = 1, skipna = False))
print(df.mean(axis = 1))

print('其它')
print(df.idxmax())
print(df.cumsum())
print(df.describe())
obj = Series(['a', 'a', 'b', 'c'] * 4)
print(obj.describe())

相关系数与协方差

  • 相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。百度
    百科
  • 协方差:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个
    变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也
    大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变
    化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望
    值,那么两个变量之间的协方差就是负值。

pandas的数据处理常用方法总结

Series和DataFrame排序

Series排序

  • sort_values根据值大小排序,默认是升序
  • sort_index 根据索引排序
    DataFrame排序
  • sort_values根据值大小排序,默认是升序

重命名DataFrame的Index

  • df.index = Series(list('abc'))直接赋一个新值
  • df.index = df.index.map(str.lower)
  • df = df.rename(index=str.lower,columns=str.lower)
  • df = df.rename(index={'A' : 'a'})

DataFrame的Merge操作

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False)
Docstring:
Merge DataFrame objects by performing a database-style join operation by
columns or indexes.

If joining columns on columns, the DataFrame indexes *will be
ignored*. Otherwise if joining indexes on indexes or indexes on a column or
columns, the index will be passed on.

Parameters
----------
left : DataFrame
right : DataFrame
how : {'left', 'right', 'outer', 'inner'}, default 'inner'
    * left: use only keys from left frame (SQL: left outer join)
    * right: use only keys from right frame (SQL: right outer join)
    * outer: use union of keys from both frames (SQL: full outer join)
    * inner: use intersection of keys from both frames (SQL: inner join)
on : label or list
    Field names to join on. Must be found in both DataFrames. If on is
    None and not merging on indexes, then it merges on the intersection of
    the columns by default.
left_on : label or list, or array-like
    Field names to join on in left DataFrame. Can be a vector or list of
    vectors of the length of the DataFrame to use a particular vector as
    the join key instead of columns
right_on : label or list, or array-like
    Field names to join on in right DataFrame or vector/list of vectors per
    left_on docs
left_index : boolean, default False
    Use the index from the left DataFrame as the join key(s). If it is a
    MultiIndex, the number of keys in the other DataFrame (either the index
    or a number of columns) must match the number of levels
right_index : boolean, default False
    Use the index from the right DataFrame as the join key. Same caveats as
    left_index
sort : boolean, default False
    Sort the join keys lexicographically in the result DataFrame
suffixes : 2-length sequence (tuple, list, ...)
    Suffix to apply to overlapping column names in the left and right
    side, respectively
copy : boolean, default True
    If False, do not copy data unnecessarily
indicator : boolean or string, default False
    If True, adds a column to output DataFrame called "_merge" with
    information on the source of each row.
    If string, column with information on source of each row will be added to
    output DataFrame, and column will be named value of string.
    Information column is Categorical-type and takes on a value of "left_only"
    for observations whose merge key only appears in 'left' DataFrame,
    "right_only" for observations whose merge key only appears in 'right'
    DataFrame, and "both" if the observation's merge key is found in both.

    .. versionadded:: 0.17.0

Examples
--------

>>> A              >>> B
    lkey value         rkey value
0   foo  1         0   foo  5
1   bar  2         1   bar  6
2   baz  3         2   qux  7
3   foo  4         3   bar  8

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
   lkey  value_x  rkey  value_y
0  foo   1        foo   5
1  foo   4        foo   5
2  bar   2        bar   6
3  bar   2        bar   8
4  baz   3        NaN   NaN
5  NaN   NaN      qux   7

Returns
-------
merged : DataFrame
    The output type will the be same as 'left', if it is a subclass
    of DataFrame.

Concatenate和Combine

np.concatenate(arr1,arr2)#默认是竖着增加,axis=1时横着增加,即增加列
combine_first,它实现既不是行之间的连接,也不是列之间的连接,它在修正数据,用一个DataFrame来填补前面的DataFrame中NAN的数据
Merge, join, and concatenate官方文档说明:http://pandas.pydata.org/pandas-docs/stable/merging.html

通过apply进行数据预处理

df['A'] = df['A'].apply(str.upper)

通过去重进行数据清洗

查看一列唯一值:df['A'].unique()
查看是否有重复:df['A'].duplicated()
删除重复数据:df.drop_duplicated(['A'])

时间序列

pd.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)
Docstring:
Return a fixed frequency datetime index, with day (calendar) as the default
frequency

Parameters
----------
start : string or datetime-like, default None
    Left bound for generating dates
end : string or datetime-like, default None
    Right bound for generating dates
periods : integer or None, default None
    If None, must specify start and end
freq : string or DateOffset, default 'D' (calendar daily)
    Frequency strings can have multiples, e.g. '5H'
tz : string or None
    Time zone name for returning localized DatetimeIndex, for example
Asia/Hong_Kong
normalize : bool, default False
    Normalize start/end dates to midnight before generating date range
name : str, default None
    Name of the resulting index
closed : string or None, default None
    Make the interval closed with respect to the given frequency to
    the 'left', 'right', or both sides (None)

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
参照:http://blog.csdn.net/wangshuang1631/article/details/52314944

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容