TensotFlow 应用实例:09-classification 分类器

TensotFlow 应用实例:09-classification 分类器

本文是我在学习TensotFlow 的时候所记录的笔记,共享出来希望能够帮助一些需要的人。

classification 是一个分类器,用来解决分类的问题
在之前的例子中都是一些线性回归的问题,或者非线性数据,输入输出就是一(组)对一(组)的数值,之前的都是一些连续的数据,输出同样是一组连续的数据

classification是一些分类的问题,输入的是一组数据,输出的结果是一组概率,整组概率的值相加结果为1,可以选择最接近1的值做为输出的结果

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


# classification 是一个分类器的问题
# 在之前的例子中都是一些线性回归的问题,或者非线性数据,输入输出就是一(组)对一(组)的数值
# 之前的都是一些连续的数据

# classification是一些分类的问题,输入的是一组数据,输出的结果是一组概率,整组概率的值相加
# 结果为1,可以选择最接近1的值做为输出的结果

# number 1 to 10 image data
# 如果本地没有相应的数据包,会先下载,然后解压数据包
# MNIST_data 是下载数据要保存的位置
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 添加神经层
def add_layer(inputs, in_size, out_size, activation_function=None):
    # Weights define
    # 权重,尽量要是一个随机变量
    # 随机变量在生成初始变量的时候比全部为零效果要好的很多
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    # biases define
    # 偏值项,是一个列表,不是矩阵,默认设置为0 + 0.1
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    # W * x + b
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    # 如果activation_function是空的时候就表示是一个线性关系直接放回即可
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs


# 计算精确度
# compute_accuracy 要使用
def compute_accuracy(v_xs, v_ys):
    global prediction
    #
    y_pre = sess.run(prediction, feed_dict={xs: v_xs})
    correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # result 是一个百分比,百分比越高证明越准确
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
    return result

# define placeholder for inputs to network
# 输入时一个28*28像素的图片 28 * 28 = 784
# 输出是一个0到9数字概率的矩阵
# 数据形式是float32
# None表示不规定有多少个sample, 可以为任意多
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])

# add output layer
# activation_function 使用的softmax
# softmax 经常用在做分类器的
# prediction 预测值,是一个1*10的概率矩阵
prediction = add_layer(xs, 784, 10,  activation_function=tf.nn.softmax)

# the error between prediction and real data
# loss function
# cross_entropy 分类的时候经常使用softmax + cross_entropy来计算的
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()

# important step
# tf.initialize_all_variables() no long valid from
# "2017-03-02", "Use `tf.global_variables_initializer` instead."
init = tf.global_variables_initializer()
sess.run(init)


for i in range(1000):
    # 从下载好的数据中提取 100 个来学习
    # 分批的原因是为了更快的看到结果
    # 而且这种方式也不会比全部加载的效果差

    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
    if i % 50 == 0:
        print(compute_accuracy(mnist.test.images, mnist.test.labels))


本文代码GitHub地址 tensorflow_learning_notes

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容