利用R进行数据处理

一、数据读取

在利用R处理数据时,发现数据会有一些缺失,这时R就会报错

image.png
正如报错所示,第一行相比于其余行缺一个数据,这时我们可以利用skip=1这个函数跳过第一行,但大多数据并不是仅仅只有第一行缺数据,这时我们可以利用fill=T来填补空余的数据。
Go <- read.table("~/bulk_RNA/merge_bulk_RNA/GO/new.Annot.txt",head=T,sep="\t",fill = T)
这个时候就可以正常读入了,一些无数据的空就以空格填补了。

二、数据处理

1、数据拆分

有时我们的数据是这样的
image.png
但我们想处理成这种的
image.png

就是将每一个symbol号与一个GO_ID号相对应,这样方便后期做富集分析,我们对数据做以下处理:
a.将GO.Compoment按照;分割

# 初始化一个新的数据框
new_GO_term_BP <- data.frame(
  Column1 = character(0),
  Column2 = character(0),
  Column3 = character(0)
 )
# 遍历原始数据框的每一行
for (i in 1:nrow(GO_term_BP)) {
  # 使用strsplit将第三列的数据按分号分割成向量
  split_values <- unlist(strsplit(GO_term_BP$GO.Process[i], ";"))
  # 创建一个与分割后的数据长度相等的数据框
  temp_df_BP <- data.frame(
    Column1 = rep(GO_term_BP$GeneID[i], length(split_values)),
    Column2 = rep(GO_term_BP$Symbol[i], length(split_values)),
    Column3 = split_values
  )
  # 将temp_df添加到新的数据框中
  new_GO_term_BP <- rbind(new_GO_term_BP, GO_term_BP)
}

得到如下结果
image.png

但运行时间比较长,还是后台服务器提交方便。

分割后得到如下结果
image.png
可以看到我们此时再需将GO term按照//分割为两列即可。
split_data <- strsplit(new_GO_term_BP$Column3, "//", fixed = TRUE)

# 创建一个新的数据框
new_df <- data.frame(
  Column1 = new_GO_term_BP$Column1,
  Column2 = new_GO_term_BP$Column2,
  NewColumn1 = sapply(split_data, function(x) x[1]),
  NewColumn2 = sapply(split_data, function(x) x[2])
)

此时数据就成了我们想要的
image.png

以上数据再进行一些简单的分列即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容