用 Go 构建一个区块链 -- Part 2: 工作量证明

翻译的系列文章我已经放到了 GitHub 上:blockchain-tutorial,后续如有更新都会在 GitHub 上,可能就不在这里同步了。如果想直接运行代码,也可以 clone GitHub 上的教程仓库,进入 src 目录执行 make 即可。


前面一文 中,我们构造了一个非常简单的数据结构,这个数据结构也是整个区块链数据库的核心。目前所完成的区块链原型,已经可以通过链式关系把区块相互关联起来:每个块都被连接到前一个块。

但是,我们实现的区块链有一个巨大的缺点:向链中加入区块太容易和廉价了。而区块链和比特币的其中一个核心就是,要想加入新的区块,必须先完成一些非常困难的工作。在本文,我们将会解决这个缺点。

工作量证明

区块链的一个关键点就是,一个人必须经过一系列困难的工作,才能将数据放入到区块链中。正是这种困难的工作,才使得区块链是安全和一致的。此外,完成这个工作的人也会获得奖励(这也就是通过挖矿获得币)。

这个机制与生活的一个现象非常类似:一个人必须通过努力工作,才能够获得回报或者奖励,用以支撑他们的生活。在区块链中,是通过网络中的参与者(矿工)不断的工作来支撑整个网络,也就是矿工不断地向区块链中加入新块,然后获得相应的奖励。作为他们努力工作的结果,新生成的区块就能够被安全地被加入到区块链中,这种机制维护了整个区块链数据库的稳定性。值得注意的是,完成了这个工作的人必须要证明这一点,他必须要证明确实是他完成了这些工作。

整个 “努力工作并进行证明” 的机制,就叫做工作量证明(proof-of-work)。要想完成工作非常地不容易,因为这需要大量的计算能力:即便是高性能计算机,也无法在短时间内快速完成。此外,这个工作的困难度会随着时间不断增长,以保持每个小时大概出 6 个新块的速度。在比特币中,这个工作的目的是为了找到一个块的哈希,同时这个哈希满足了一些必要条件。这个哈希,也就充当了证明的角色。因此,寻求证明(寻找有效哈希),就是实际要做的事情。

哈希计算

在本节中,我们会讨论哈希计算。如果你已经熟悉了这个概念,可以跳过这一节。

获得指定数据的一个哈希值的过程,就叫做哈希计算。一个哈希,就是对所计算数据的一个唯一的表示。一个哈希函数输入任意大小的数据,输出一个固定大小的哈希值。下面是哈希的几个关键特性:

  1. 无法从一个哈希值恢复原始数据。也就是说,哈希并不是加密。
  2. 对于特定的数据,只能有一个哈希,并且这个哈希是唯一的。
  3. 即使是仅仅改变输入数据中的一个字节,也会导致输出一个完全不同的哈希。
hashing

哈希函数被广泛用于检测数据的一致性。一些软件提供者除了提供软件包以外,还会发布校验和。当下载完一个文件以后,你可以用哈希函数对下载好的文件计算一个哈希,并与作者提供的哈希进行比较,以此来保证文件下载的完整性。

在区块链中,哈希被用于保证一个块的一致性。哈希算法的输入数据包含了前一个块的哈希,因此使得不太可能(或者,至少很困难)去修改链中的一个块:因为如果一个人想要修改前面一个块的哈希,那么他必须要重新计算这个块以及后面所有块的哈希。

Hashcash

比特币使用 Hashcash ,一个最初用来防止垃圾邮件的工作量证明算法。它可以被分解为以下步骤:

  1. 取一些公开的数据(比如,如果是 email 的话,它可以是接收者的邮件地址;在比特币中,它是区块头)
  2. 给这个公开数据添加一个计数器。计数器默认从 0 开始
  3. data(数据)counter(计数器) 组合到一起,获得一个哈希
  4. 检查哈希是否符合一定的条件:
    1. 如果符合条件,结束
    2. 如果不符合,增加计数器,重复步骤 3-4

因此,这是一个暴力算法:改变计数器,计算一个新的哈希,检查,增加计数器,计算一个哈希,检查,如此反复。这也是为什么说它是在计算上是非常昂贵的,因为这一步需要如此反复不断地计算和检查。

现在,让我们来仔细看一下一个哈希要满足的必要条件。在原始的 Hashcash 实现中,它的要求是 “一个哈希的前 20 位必须是 0”。在比特币中,这个要求会随着时间而不断变化。因为按照设计,必须保证每 10 分钟生成一个块,而不论计算能力会随着时间增长,或者是会有越来越多的矿工进入网络,所以需要动态调整这个必要条件。

为了阐释这一算法,我从前一个例子(“I like donuts”)中取得数据,并且找到了一个前 3 个字节是全是 0 的哈希。

a hash that starts with 3 zero-bytes

ca07ca 是计数器的 16 进制值,十进制的话是 13240266.

实现

好了,完成了理论层面,来开始写代码吧!首先,定义挖矿的难度值:

const targetBits = 24

在比特币中,当一个块被挖出来以后,“target bits” 代表了区块头里存储的难度。这里的 24 指的是算出来的哈希前 24 位必须是 0,用 16 进制表示化的话,就是前 6 位必须是 0,这一点可以在最后的输出可以看出来。目前不会实现一个动态调整目标的算法,所以将难度定义为一个全局的常量即可。

24 其实是一个可以任意取的数字,目的是要有一个目标(target)而已,这个目标占据不到 256 位的内存空间。同时,我们想要有足够的差异性,但是又不至于大的过分,因为差异性越大,就越难找到一个合适的哈希。

type ProofOfWork struct {
    block  *Block
    target *big.Int
}

func NewProofOfWork(b *Block) *ProofOfWork {
    target := big.NewInt(1)
    target.Lsh(target, uint(256-targetBits))

    pow := &ProofOfWork{b, target}

    return pow
}

这里,我们构造了 ProofOfWork 结构,里面存储了指向一个块和一个目标的指针。“目标” ,也就是前一节中所描述的必要条件。这里使用了一个 整数,我们将哈希与目标进行比较:先把一个哈希转换成一个大整数,然后检测它是否小于目标。

NewProofOfWork 函数中,我们将 big.Int 初始化为 1,然后左移 256 - targetBits 位。256 是一个 SHA-256 哈希的位数,我们将要使用的是 SHA-256 哈希算法。target(目标) 的 16 进制形式为:

0x10000000000000000000000000000000000000000000000000000000000

它在内存上占据了 29 个字节。下面是与前面例子哈希的形式化比较:

0fac49161af82ed938add1d8725835cc123a1a87b1b196488360e58d4bfb51e3
0000010000000000000000000000000000000000000000000000000000000000
0000008b0f41ec78bab747864db66bcb9fb89920ee75f43fdaaeb5544f7f76ca

第一个哈希(基于 “I like donuts” 计算)比目标要大,因此它并不是一个有效的工作量证明。第二个哈希(基于 “I like donutsca07ca” 计算)比目标要小,所以是一个有效的证明。

译者注:评论有人提出上面的形式化比较有些“言不符实”,其实它应该并非由 “I like donuts” 而来,但是原文作者表达的意思是没问题的,可能是疏忽而已。下面是我做的一个小实验:

package main

import (
    "crypto/sha256"
    "fmt"
    "math/big"
)

func main() {

    data1 := []byte("I like donuts")
    data2 := []byte("I like donutsca07ca")
    targetBits := 24
    target := big.NewInt(1)
    target.Lsh(target, uint(256-targetBits))
    fmt.Printf("%x\n", sha256.Sum256(data1))
    fmt.Printf("%64x\n", target)
    fmt.Printf("%x\n", sha256.Sum256(data2))

}

输出:

experiment

你可以把目标想象为一个范围的上界:如果一个数(由哈希转换而来)比上界要小,那么这是有效的,反之无效。因为要求比上界要小,所以会导致更少的有效数字。因此,也就需要通过困难的工作(一系列反复的计算),才能找到一个有效的数字。

现在,我们需要有数据来进行哈希,准备数据:

func (pow *ProofOfWork) prepareData(nonce int) []byte {
    data := bytes.Join(
        [][]byte{
            pow.block.PrevBlockHash,
            pow.block.Data,
            IntToHex(pow.block.Timestamp),
            IntToHex(int64(targetBits)),
            IntToHex(int64(nonce)),
        },
        []byte{},
    )

    return data
}

这个部分比较直观:只需要将 target ,nonce 与 Block 进行合并。这里的 nonce ,就是上面 Hashcash 所提到的计数器,它是一个密码学术语。

很好,到这里,所有的准备工作就完成了,下面来实现 PoW 算法的核心:

func (pow *ProofOfWork) Run() (int, []byte) {
    var hashInt big.Int
    var hash [32]byte
    nonce := 0

    fmt.Printf("Mining the block containing \"%s\"\n", pow.block.Data)
    for nonce < maxNonce {
        data := pow.prepareData(nonce)
        hash = sha256.Sum256(data)
        hashInt.SetBytes(hash[:])

        if hashInt.Cmp(pow.target) == -1 {
            fmt.Printf("\r%x", hash)
            break
        } else {
            nonce++
        }
    }
    fmt.Print("\n\n")

    return nonce, hash[:]
}

首先我们对变量进行初始化:

  • HashInthash 的整形表示;
  • nonce 是计数器。

然后开始一个 “无限” 循环:maxNonce 对这个循环进行了限制, 它等于 math.MaxInt64。这是为了避免 nonce 可能出现的溢出。尽管我们的 PoW 实现的难度太小了,以至于计数器其实不太可能会溢出,但最好还是以防万一检查一下。

在这个循环中,我们做的事情有:

  1. 准备数据
  2. 用 SHA-256 对数据进行哈希
  3. 将哈希转换成一个大整数
  4. 将这个大整数与目标进行比较

跟之前所讲的一样简单。现在我们可以移除 BlockSetHash 方法,然后修改 NewBlock 函数:

func NewBlock(data string, prevBlockHash []byte) *Block {
    block := &Block{time.Now().Unix(), []byte(data), prevBlockHash, []byte{}, 0}
    pow := NewProofOfWork(block)
    nonce, hash := pow.Run()

    block.Hash = hash[:]
    block.Nonce = nonce

    return block
}

在这里,你可以看到 nonce 被保存为 Block 的一个属性。这是十分有必要的,因为待会儿我们需要用 nonce 来对这个工作量进行证明。Block 结构现在看起来像是这样:

type Block struct {
    Timestamp     int64
    Data          []byte
    PrevBlockHash []byte
    Hash          []byte
    Nonce         int
}

好了!现在让我们来运行一下是否正常工作:

Mining the block containing "Genesis Block"
00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1

Mining the block containing "Send 1 BTC to Ivan"
00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804

Mining the block containing "Send 2 more BTC to Ivan"
000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe

Prev. hash:
Data: Genesis Block
Hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1

Prev. hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Data: Send 1 BTC to Ivan
Hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804

Prev. hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Data: Send 2 more BTC to Ivan
Hash: 000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe

成功了!你可以看到每个哈希都是 3 个字节的 0 开始,并且获得这些哈希需要花费一些时间。

还剩下一件事情需要做,对工作量证明进行验证:

func (pow *ProofOfWork) Validate() bool {
    var hashInt big.Int

    data := pow.prepareData(pow.block.Nonce)
    hash := sha256.Sum256(data)
    hashInt.SetBytes(hash[:])

    isValid := hashInt.Cmp(pow.target) == -1

    return isValid
}

这里,就是我们就用到了上面保存的 nonce。

再来检测一次是否正常工作:

func main() {
    ...

    for _, block := range bc.blocks {
        ...
        pow := NewProofOfWork(block)
        fmt.Printf("PoW: %s\n", strconv.FormatBool(pow.Validate()))
        fmt.Println()
    }
}

输出:

...

Prev. hash:
Data: Genesis Block
Hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038
PoW: true

Prev. hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038
Data: Send 1 BTC to Ivan
Hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b
PoW: true

Prev. hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b
Data: Send 2 more BTC to Ivan
Hash: 000000e42afddf57a3daa11b43b2e0923f23e894f96d1f24bfd9b8d2d494c57a
PoW: true

从下图可以看出,这次我们产生三个块花费了一分多钟,比没有工作量证明之前慢了很多(也就是成本高了很多):

output

总结

我们的区块链离真正的区块链又进了一步:现在需要经过一些困难的工作才能加入新的块,因此挖矿就有可能了。但是,它还缺少一些至关重要的特性:区块链数据库并不是持久化的,没有钱包,地址,交易,也没有共识机制。不过,所有的这些,我们都会在接下来的文章中实现,现在,愉快地挖矿吧!


链接:

本文源代码:part_2

原文:

Building Blockchain in Go. Part 2: Proof-of-Work

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 导语:比特币作为近年来最成功的数字加密货币,引起了全球高度关注,不同于其它数字货币,比特币使用由众多节点构成的去中...
    点融黑帮阅读 1,262评论 1 31
  • 所有货币都需要一些方法来控制供应,并强制执行各种安全属性以防止作弊。在法定货币方面,像中央银行这样的组织控制货币供...
    Nutbox_Lab阅读 3,070评论 1 3
  • 简介 不管你们知不知道以太坊(Ethereum blockchain)是什么,但是你们大概都听说过以太坊。最近在新...
    Lilymoana阅读 3,887评论 1 22
  • 昨天写了妈妈,居然收到超过一百的打赏。果然人还是喜欢有感情的东西,容易引发共鸣。顺着昨天的话题,今天写写跟爸爸的两...
    伊米酱阅读 976评论 6 7