HBase宕机恢复-SplitWAL

HBase检测宕机是通过Zookeeper实现的, 正常情况下RegionServer会周期性向Zookeeper发送心跳,一旦发生宕机,心跳就会停止,超过一定时间(SessionTimeout,我们集群配置的是30s)Zookeeper就会认为RegionServer宕机离线,并将该消息通知给Master。

Master检测到宕机之后会将宕机RegionServer上的所有Region重新分配到集群中其他正常RegionServer上去,再根据HLog进行丢失数据恢复,恢复完成之后就可以对外提供服务,整个过程都是自动完成的。



HBase切分HLog当前主要有两种模式Distributed Log Splitting和Distributed Log Replay。
由于我们的集群没有配置hbase.master.distributed.log.replay=true,所以这里主要研究Distributed Log Splitting流程。

Distributed Log Splitting
整体流程:


Master作为HLog切分任务的协调者,主要工作流程如下:

  1. Master会将待切分日志路径发布到Zookeeper节点上(/hbase/splitWAL),每个日志作为一个任务,每个任务都会有对应状态,起始状态为TASK_UNASSIGNED

  2. 所有RegionServer启动之后都注册在这个节点上等待新任务,一旦Master发布任务之后,RegionServer就会抢占该任务

  3. 抢占任务实际上首先去查看任务状态,如果是TASK_UNASSIGNED状态,说明当前没有人占有,此时就去修改该节点状态为TASK_OWNED。如果修改失败,说明其他RegionServer也在抢占,修改成功表明任务抢占成功。

  4. RegionServer抢占任务成功之后会分发给相应线程处理,如果处理成功,会将该任务对应zk节点状态修改为TASK_DONE,一旦失败会修改为TASK_ERR

  5. Master会一直监听在该ZK节点上,一旦发生状态修改就会得到通知。任务状态变更为TASK_ERR的话,Master会重新发布该任务,而变更为TASK_DONE的话,Master会将对应的节点删除

Regionserver作为实际工作的执行者,抢占任务以及抢占任务之后的工作流程:

  1. 假设Master当前发布了3个任务,即当前需要回放3个日志文件,分别为hlog1、hlog2和hlog3

  2. RegionServer1抢占到了hlog1和hlog2日志,RegionServer2抢占到了hlog3日志,

  3. 以RegionServer1为例,其抢占到hlog1和hlog2日志之后会分别分发给两个HLogSplitter线程进行处理,HLogSplitter负责对日志文件执行具体的切分,切分思路还是首先读出日志中每一个<HLogKey, WALEdit>数据对,根据HLogKey所属Region写入不同的Region Buffer,写入Region Buffer之前会对Entrys进行过滤,通过比较sequenceId,如果发现该Entry已经flush了,就跳过这个Entry。

  4. 每个Region Buffer都会有一个对应的写线程,将buffer中的日志数据写入hdfs中,写入路径为hdfs:/hbase/data/ns/table/region1/seqenceidN.temp,其中seqenceid是一个日志中某个region对应的最大sequenceid

  5. 针对某一region回放日志只需要将该region对应的所有文件按照sequenceid由小到大依次进行回放即可

源码:

  • 检测宕机 发布任务:


  • RS抢占、处理任务


  • Region replay、上线


整个切分过程中可能出现的问题、解决方法:(持续更新)

1.RS节点假死后,DataNode进程处于存在但不可服务的状态,会导致hbase split wal超时到几乎无法进行,10分钟后DataNode彻底下线才能恢复性能

处理:联系SA关机、重启机器,可以加速集群恢复

  1. RS 切分任务失败时,Master会重新发布任务,如果某个切分任务卡死,无法顺利完成时,可以手动删除zookeeper上/hbase/splitWAL 下的任务节点,master会重新发布 (待验证)

参考:http://hbasefly.com/2016/10/29/hbase-regionserver-recovering/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容

  • 参考:https://www.jianshu.com/p/569106a3008f 最近在逐步跟进Hbase的相关...
    博弈史密斯阅读 855评论 1 1
  • 目录 HBase的故障恢复有哪三种不同模式? HBase日志切分方法? Distributed Log Repla...
    尼小摩阅读 900评论 0 1
  • Hbase 每一次对数据的修改都会写入到memorystore 中,写入成功后,Hbase 便会将这条记录写入到...
    Ivan_030c阅读 5,298评论 1 0
  • HBase深入分析之RegionServer 所有的用户数据以及元数据的请求,在经过Region的定位,最终会落在...
    丝丝雨凉阅读 9,079评论 0 3
  • 【什么是大数据、大数据技术】 大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法在合理时间内通过传统的应...
    kimibob阅读 2,743评论 0 51