图像直方图归一化 Histogram Normalization

一. 直方图归一化

        有些灰度图像的像素并没有分布在 [0,255] 内,而是分布在 [0,255] 的子区间内。这样的图像肉眼看上去往往不是很清晰。我们可以通过直方图归一化的方式,将它的像素分布从 [0,255] 的子区间变为 [0,255] 范围内。通过这样的方式,往往可以增加图像的清晰度。

        这种归一化直方图的操作被称为灰度变换(Grayscale Transformation)。像素点的取值范围从 [c,d] 转换到 [a,b] 的算法如下:

直方图归一化算法 ↑

二. 实验:将一张灰度范围为 [10,160] 的图像进行直方图归一化,使其灰度范围为 [0,255]

import cv2

import numpy as np

import matplotlib.pyplot as plt

# histogram normalization

def hist_normalization(img, a=0, b=255):

        # get max and min

        c = img.min()

        d = img.max()

        out = img.copy()

        # normalization

        out = (b-a) / (d - c) * (out - c) + a

        out[out < a] = a

        out[out > b] = b

        out = out.astype(np.uint8)

        return out

# Read image

img = cv2.imread("../head_g_n.jpg",0).astype(np.float)

# histogram normalization

out = hist_normalization(img)

# Display histogram

plt.hist(out.ravel(), bins=255, rwidth=0.8, range=(0, 255))

plt.savefig("out_his.jpg")

plt.show()

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()


三. 实验结果及分析

原图像像素分布直方图[10,160] ↑


原图像 ↑
归一化后的图像像素分布直方图[0,255] ↑


归一化后的图像 ↑

        可以看到,我们将灰度范围为 [10,160] 的图像进行直方图归一化到 [0,255] 后,图像的清晰度显著增强。


四. 参考内容:

        https://www.cnblogs.com/wojianxin/p/12509686.html

        https://blog.csdn.net/Ibelievesunshine/article/details/104918524

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容