生信星球学习小组Day6笔记-柠萌

Day6-学习R包

思维导图如下
R包的学习.png

1.R包安装和加载

1.1 镜像设置

两行代码↓可以搞定,但这个方法并不适用于每个电脑,有一部分会失败。随缘,失败的话就每次需要下载R包时运行这两句代码即可。

# options函数就是设置R运行过程中的一些选项设置
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
# 当然可以换成其他地区的镜像

1.2 安装

install.packages(“包”)
BiocManager::install(“包”)
  • 上述二者之一,取决于要安装的包存在于CRAN网站还是Biocductor,存在于哪里?可以谷歌搜到

1.3 加载

下面二者之一均可

library(包)
require(包)

2.dplyr五个基础函数

使用示例数据如下
test <- iris[c(1:2,51:52,101:102),]

2.1 mutate(),新增列

代码如下
mutate(test, new = Sepal.Length * Sepal.Width)
运行界面如下

mutate.png

2.2 select(),按列筛选

  • 1.按列号筛选
    代码如下
select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)
  • 2.按列名筛选
    代码如下
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))

2.3 filter()筛选行

代码如下

filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))

2.4 arrange(),按某1列或某几列对整个表格进行排序

代码如下

arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小

2.5 summarise():汇总

代码如下

summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

3.dplyr两个实用技能

3.1 管道操作 %>% (cmd/ctr + shift + M)

  • (加载任意一个tidyverse包即可用管道符号)
    代码如下
test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

3.2 count统计某列的unique值

代码如下

count(test,Species)

4.dplyr处理关系数据

  • 即将2个表进行连接,注意:不要引入factor
    示例数据创建
options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 

数据如下所示
test1.png
test2.png

4.1 內连inner_join,取交集

代码如下

inner_join(test1, test2, by = "x")

运行界面如下
内连.png

4.2 左连left_join

代码如下

left_join(test1, test2, by = 'x')

运行界面如下
左连.png

4.3 全连full_join

代码如下
full_join( test1, test2, by = 'x')
运行界面如下

全连.png

4.4 半连接:返回能够与y表匹配的x表所有记录semi_join

代码如下
semi_join(x = test1, y = test2, by = 'x')
运行界面如图

半连接.png

4.5 反连接:返回无法与y表匹配的x表的所记录anti_join

代码如下
anti_join(x = test2, y = test1, by = 'x')
运行界面如下

反连接.png

4.6 简单合并

在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
先设置示例数据

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
test3 <- data.frame(z = c(100,200,300,400))
test3

数据如下
示例数据.png

代码如下

bind_rows(test1, test2)
bind_cols(test1, test3)

运行界面如下
简单合并.png

OK,今天学习到此结束啦!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容