机器学习实战第8章-回归

8-1 用线性回归创建最佳拟合曲线
创建regression.py

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 22 23:36:45 2016

@author: enniu
"""

from numpy import *
def loanDataSet(filename):
    numFeat=len(open(filename).readline().split('\t'))-1
    """
    #查看文件第一行内容
    #cc=open(filename).readline().split('\t')
    #for i in cc:
    #   print i,
    """
    datamat=[];labelmat=[]
    fr=open(filename)
    for line in fr:
        linearr=[]
        curline=line.strip().split('\t')
        for i in range(numFeat):
            linearr.append(float(curline[i]))
            #print curline
        datamat.append(linearr)
        labelmat.append(float(curline[-1]))
    return datamat,labelmat  
    #datamat形如[[1.0, 0.067732], [1.0, 0.42781],。。。     labelmat形如[3.176513, 3.816464, 4.550095,

def standregres(xarr,yarr):
    xmat=mat(xarr);ymat=mat(yarr).T  #此处误写为:,导致报错can't assign to function call
    xtx=xmat.T*xmat
    if linalg.det(xtx)==0:
        print '无法求逆矩阵'
    ws=xtx.I*(xmat.T*ymat)
    return ws

if __name__=='__main__':
    a,b=loanDataSet('/Users/enniu/Desktop/jqxx/ex0.txt')
    c=standregres(a,b)
    print a
    print b
    print c
    

调用regression.py,并拟合回归曲线

from numpy import *
import regression as cc    #import regression package
import matplotlib.pyplot as plt

"""
import sys 
reload(sys) 
sys.setdefaultencoding("utf-8") 
"""
xarr,yarr=cc.loanDataSet('/Users/enniu/Desktop/jqxx/ex0.txt')
ws=cc.standregres(xarr,yarr)
xmat=mat(xarr)
ymat=mat(yarr)
yhat=xmat*ws       #(200*2)(2*1)=(200,1)

#作图
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xmat[:,1].flatten().A[0],ymat.T.flatten().A[0])  #做出散点图。flatten用于平整矩阵。A[0]用于获取array第一列

xcopy=xmat.copy()
xcopy.sort(0)           #在原数据集上排序    
yhat=xcopy*ws
ax.plot(xcopy[:,1],yhat)
plt.show()   #must add  

8-2 局部加权线性回归函数

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 22 23:36:45 2016

@author: enniu
"""

from numpy import *
def loanDataSet(filename):
    numFeat=len(open(filename).readline().split('\t'))-1
    """
    #查看文件第一行内容
    #cc=open(filename).readline().split('\t')
    #for i in cc:
    #   print i,
    """
    datamat=[];labelmat=[]
    fr=open(filename)
    for line in fr:
        linearr=[]
        curline=line.strip().split('\t')
        for i in range(numFeat):
            linearr.append(float(curline[i]))
            #print curline
        datamat.append(linearr)
        labelmat.append(float(curline[-1]))
    return datamat,labelmat  
    #datamat形如[[1.0, 0.067732], [1.0, 0.42781],。。。     labelmat形如[3.176513, 3.816464, 4.550095,

def standregres(xarr,yarr):
    xmat=mat(xarr);ymat=mat(yarr).T  #此处误写为:,导致报错can't assign to function call
    xtx=xmat.T*xmat
    if linalg.det(xtx)==0:
        print '无法求逆矩阵'
    ws=xtx.I*(xmat.T*ymat)
    return ws   #,xtx,xmat,ymat

def lwlr(testpoint,xarr,yarr,k=1.0):
    xmat=mat(xarr);ymat=mat(yarr).T 
    m=shape(xmat)[0]     #shape(xmat)=(200,1),m=200
    weights=mat(eye(m))
    for j in range(m):
        diffmat=testpoint-xmat[j,:]
        weights[j,j]=exp(diffmat*diffmat.T/(-2*k**2))
    xtx=xmat.T*(weights*xmat)
    if linalg.det(xtx)==0:
        print "行列式为0,无法取逆"
        return
    ws=xtx.I*(xmat.T*(weights*ymat))
    return testpoint*ws

def lwlrtest(testarr,xarr,yarr,k=1.0):
    m=shape(testarr)[0]
    yhat=zeros(m)  #注意是括号
    for i in range(m):
        yhat[i]=lwlr(testarr[i],xarr,yarr,k)
    return yhat

if __name__=='__main__':
    a,b=loanDataSet('/Users/enniu/Desktop/jqxx/ex0.txt')
    n=lwlr(1,a,b)
    print n

调用regression.py,并拟合回归曲线

from numpy import *
import regression as cc
import matplotlib.pyplot as plt

xarr,yarr=cc.loanDataSet('/Users/enniu/Desktop/jqxx/ex0.txt')
ws=cc.standregres(xarr,yarr)
xmat=mat(xarr)
ymat=mat(yarr)
 
yhat=cc.lwlrtest(xarr,xarr,yarr,0.003)   #type=matrix
strind=xmat[:,1].argsort(0)
xsort=xmat[strind][:,0,:]

fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xmat[:,1].flatten().A[0],ymat.T.flatten().A[0],s=2,c='red')
ax.plot(xsort[:,1],yhat[strind])
plt.show()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容