over (Partition by...) of oracle

over()分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行。
例子:

select *from (select name,class,score,rank() over(partition by class order by score desc) mm from t2 ) where mm=1

通过class班级进行分组,并根据score分数进行排序,用rank()函数排序方法为mm列赋予序号,然后mm=1就可以找到每组的第一名,当然可以根据score就行倒序可以找到最后一名。

row_number() over(partition by ... order by ...)

简单的说row_number()从1开始,为每一条分组记录返回一个数字, row_number() over(order by score desc)是先把score 列降序,再为降序以后的没条xlh记录返回一个序号。(如果没有分组可以理解成将整个结果作为一个分组)

row_number() over(partition by class order by score desc)表示根据class分组,在分组内部根据 score 排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内连续的唯一的)

rank() over(partition by ... order by ...)
dense_rank() over(partition by ... order by ...)

作为分数函数中有关排序的rank(),dense_rank(),row_number()。

rank() over是的作用是查出指定条件后进行一个排名,但是有一个特点。假如是对学生排名,那么实用这个函数,成绩相同的两名是并列(名次为1,2,2,4)

dense_rank()的作用和rank()很像,唯一区别就是,相同成绩并列以后,下一位同学并不空出并列所占的名次(名次为1,2,2,3)

row_number()就不一样了,它和上面两种的区别就很明显了,这个函数不需要考虑是否并列,哪怕根据条件查询出来的数值相同也会进行连续排名。

对于多表查询,可以为空置加上一个判断来显示查询数据为空的数据。

case when score is null then 1 else rank() over (partition by class order by score desc ) end as mm

其他常用的分析函数:

count() over(partition by ... order by ...) max() over(partition by ... order by ...) min() over(partition by ... order by ...) sum() over(partition by ... order by ...) avg() over(partition by ... order by ...) first_value() over(partition by ... order by ...) last_value() over(partition by ... order by ...) lag() over(partition by ... order by ...) lead() over(partition by ... order by ...)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容