Raft协议原理,论文读后感

Raft相对Paxos来说,简单很多,且易于实施。另外在选举新Leader方面,Raft优势较Paxos更加快,笔者在使用ZK过程中,Leader挂掉,需要特别多轮才能选举出新的Leader

角色

  • leader
  • flower
  • candidate(竞选者)

基础概念

Terms

在分布式系统中,比较棘手的问题就是时间问题,使用物理时间需要确保每台机器时区完全同步,Terms是Raft为了解决分布式系统中时间同步诞生的,可以将其理解为逻辑时间,它可以帮助server检测过期信息比如过期的leader。Raft将时间划分为任意长度的term,用连续整数编号。在收到其他Server发来的请求时,如果发现其他Terms较大,则会更新当前机器Term编号。


Leader选举

Raft使用心跳机制来触发leader选举。当server启动的时候是处于follower状态,当它可以收到来自leader或者candidate的有效RPC请求时就会保持follower的状态。Leader发送周期性的心跳(不含日志的AppendEntries RPC)给所有的follower来确保自己的权威。如果一个follower一段时间(称为election timeout)没有收到消息,它就会假定leader失效并开始新的选举。

为了开始新一轮选举,follower会提高自己当前的term并转为candidate状态。它会先给自己投一票然后并行向集群中的其他server发出RequestVote RPC,candidate会保持这个状态,直到下面三种事情之一发生:

  • (a) 赢得选举。当candidate收到了集群中相同term的多数节点的赞成票时就会选举成功,每一个server在给定的term内至多只能投票给一个candidate,先到先得。收到多数节点的选票可以确保在一个term内至多只能有一个leader选出。一旦一个candidate赢得选举,它就会成为leader。它之后会发送心跳消息来建立自己的权威,并阻止新的选举。
  • (b) 另一个server被确定为leader。在等待投票的过程中,candidate可能收到来自其他server的AppendEntries RPC,声明它才是leader。如果RPC中的term大于等于candidate的current term,candidate就会认为这个leader是合法的并转为follower状态。如果RPC中的term比自己当前的小,将会拒绝这个请求并保持candidate状态。
  • (c) 没有获胜者产生,等待选举超时。candidate没有选举成功或者失败,如果许多follower同时变成candidate,选票就会被瓜分,形不成多数派。这种情况发生时,candidate将会超时并触发新一轮的选举,提高term并发送新的RequestVote RPC。然而如果不采取其他措施的话,选票将可能会被再次瓜分。

为了解决再次被瓜分的问题

Raft使用随机选举超时来确保选票被瓜分的情况很少出现而且出现了也可以被很快解决。election timeout的值会在一个固定区间内随机的选取(比如150-300ms)。这使得在大部分情况下仅有一个server会超时,它将会在其他节点超时前赢得选举并发送心跳。candidate在发起选

日志备份

以下几个点值得重点关注

  • 所有客户端请求全部由Leader处理,其他Flower收到请求也会转发给Leader处理
  • 客户端提交每一条命令都会被按顺序记录到leader的日志中,每一条命令都包含term编号和顺序索引,然后向其他节点并行发送AppendEntries RPC用以复制命令(如果命令丢失会不断重发,客户端重复收到只会覆盖)
  • 假如Leader挂了,日志还没复制完,leader通过强制follower复制自己的日志来解决上述日志不一致的情形,那么冲突的日志将会被重写。为了让日志一致,先找到最新的一致的那条日志(如f中索引为3的日志条目),然后把follower之后的日志全部删除,leader再把自己在那之后的日志一股脑推送给follower,这样就实现了一致

日志压缩

随着日志大小的增长,会占用更多的内存空间,处理起来也会耗费更多的时间,对系统的可用性造成影响,因此必须想办法压缩日志大小。Snapshotting是最简单的压缩方法,系统的全部状态会写入一个snapshot保存起来,然后丢弃截止到snapshot时间点之前的所有日志

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351