Raft相对Paxos来说,简单很多,且易于实施。另外在选举新Leader方面,Raft优势较Paxos更加快,笔者在使用ZK过程中,Leader挂掉,需要特别多轮才能选举出新的Leader
角色
- leader
- flower
- candidate(竞选者)
基础概念
Terms
在分布式系统中,比较棘手的问题就是时间问题,使用物理时间需要确保每台机器时区完全同步,Terms是Raft为了解决分布式系统中时间同步诞生的,可以将其理解为逻辑时间,它可以帮助server检测过期信息比如过期的leader。Raft将时间划分为任意长度的term,用连续整数编号。在收到其他Server发来的请求时,如果发现其他Terms较大,则会更新当前机器Term编号。
Leader选举
Raft使用心跳机制来触发leader选举。当server启动的时候是处于follower状态,当它可以收到来自leader或者candidate的有效RPC请求时就会保持follower的状态。Leader发送周期性的心跳(不含日志的AppendEntries RPC)给所有的follower来确保自己的权威。如果一个follower一段时间(称为election timeout)没有收到消息,它就会假定leader失效并开始新的选举。
为了开始新一轮选举,follower会提高自己当前的term并转为candidate状态。它会先给自己投一票然后并行向集群中的其他server发出RequestVote RPC,candidate会保持这个状态,直到下面三种事情之一发生:
- (a) 赢得选举。当candidate收到了集群中相同term的多数节点的赞成票时就会选举成功,每一个server在给定的term内至多只能投票给一个candidate,先到先得。收到多数节点的选票可以确保在一个term内至多只能有一个leader选出。一旦一个candidate赢得选举,它就会成为leader。它之后会发送心跳消息来建立自己的权威,并阻止新的选举。
- (b) 另一个server被确定为leader。在等待投票的过程中,candidate可能收到来自其他server的AppendEntries RPC,声明它才是leader。如果RPC中的term大于等于candidate的current term,candidate就会认为这个leader是合法的并转为follower状态。如果RPC中的term比自己当前的小,将会拒绝这个请求并保持candidate状态。
- (c) 没有获胜者产生,等待选举超时。candidate没有选举成功或者失败,如果许多follower同时变成candidate,选票就会被瓜分,形不成多数派。这种情况发生时,candidate将会超时并触发新一轮的选举,提高term并发送新的RequestVote RPC。然而如果不采取其他措施的话,选票将可能会被再次瓜分。
为了解决再次被瓜分的问题
Raft使用随机选举超时来确保选票被瓜分的情况很少出现而且出现了也可以被很快解决。election timeout的值会在一个固定区间内随机的选取(比如150-300ms)。这使得在大部分情况下仅有一个server会超时,它将会在其他节点超时前赢得选举并发送心跳。candidate在发起选
日志备份
以下几个点值得重点关注
- 所有客户端请求全部由Leader处理,其他Flower收到请求也会转发给Leader处理
- 客户端提交每一条命令都会被按顺序记录到leader的日志中,每一条命令都包含term编号和顺序索引,然后向其他节点并行发送AppendEntries RPC用以复制命令(如果命令丢失会不断重发,客户端重复收到只会覆盖)
- 假如Leader挂了,日志还没复制完,leader通过强制follower复制自己的日志来解决上述日志不一致的情形,那么冲突的日志将会被重写。为了让日志一致,先找到最新的一致的那条日志(如f中索引为3的日志条目),然后把follower之后的日志全部删除,leader再把自己在那之后的日志一股脑推送给follower,这样就实现了一致
日志压缩
随着日志大小的增长,会占用更多的内存空间,处理起来也会耗费更多的时间,对系统的可用性造成影响,因此必须想办法压缩日志大小。Snapshotting是最简单的压缩方法,系统的全部状态会写入一个snapshot保存起来,然后丢弃截止到snapshot时间点之前的所有日志