差异分析 | DESeq2包

author:小杜的生信筆記

DEseq2官方网址:http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html

DESeq2是最常用的差异分析的方法,在上一个教程我们分享了limma差异分析 | 简书差异分析--limma包 - 知乎 等平台,我们后续也会分享常用的差异分析方法,并进行一个比较。

DESeq2包是为高�维计数数据的归一化、可视化和差分分析而设计的。 它利用经验贝叶斯技术估计对数折叠变化和离散的先验,并计算这些量的后验估计。

image.png

1 导入所需包

#if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
    
#BiocManager::install("DESeq2")
library(DESeq2)
library(dplyr)

2 导入Counts数据矩阵

## 导入Counts数据矩阵
countdata <- read.table("Countdata.txt", header = T,row.names = 1)
countdata[1:10,1:6]
> countdata[1:10,1:6]
       Control_01 Control_02 Control_03 Treat_01 Treat_02 Treat_03
gene01         11         11         11       10       11       10
gene02         14         14         14       13       14       13
gene03         14         14         14       13       14       13
gene04          7          7          7        6        7        6
gene05         11         11         11       11       11       10
gene06         14         14         14       13       14       12
gene07         13         13         13       12       13       12
gene08         11         11         10       10       11        9
gene09         11         11         11       10       11        9
gene10         10         12         12       12       12       10

3 数据过滤

## 过滤在所有重复样本中小于1的基因
countdata = countdata[rowMeans(countdata) > 1,]

4 数据样本信息

样本注释信息自己在本地后制作后进行导入

coldata  <- read.csv("countdata.csv", header = T, row.names = 1)
head(coldata)
#############
> head(coldata)
           condition
Control_01        CK
Control_02        CK
Control_03        CK
Treat_01       Treat
Treat_02       Treat
Treat_03       Treat

检查数据Counts文件与coldata数据是否匹配

all(rownames(coldata) %in% colnames(countdata))  
all(rownames(coldata) == colnames(countdata))

当返回TRUE时,表明两个数匹配。

> all(rownames(coldata) %in% colnames(countdata))  #
[1] TRUE
> all(rownames(coldata) == colnames(countdata))
[1] TRUE

5 差异分析

## 制作差异矩阵
dds <-  DESeqDataSetFromMatrix(countData = countdata,colData = coldata,design = ~ condition) 
dim(dds)

## 过滤
dds <- dds[rowSums(counts(dds)) > 1,]  
nrow(dds)  
## 差异比较
dep <- DESeq(dds)
res <- results(dep)
diff = res
diff <- na.omit(diff)  ## 去除NA
dim(diff)
write.csv(diff,"all_diff.csv")  # 导出所有的差异文件

DESeq输出的差异文件

> head(diff)
log2 fold change (MLE): condition Treat vs CK 
Wald test p-value: condition Treat vs CK 
DataFrame with 6 rows and 6 columns
        baseMean log2FoldChange     lfcSE       stat    pvalue      padj
       <numeric>      <numeric> <numeric>  <numeric> <numeric> <numeric>
gene01   10.6594    -0.01071206  0.788745 -0.0135811  0.989164  0.999747
gene02   13.6626     0.00959682  0.713528  0.0134498  0.989269  0.999747
gene03   13.6626     0.00959682  0.713528  0.0134498  0.989269  0.999747
gene05   10.8224     0.03339267  0.783215  0.0426354  0.965992  0.999747
gene06   13.4731    -0.03001613  0.716954 -0.0418662  0.966605  0.999747
gene07   12.6616     0.00389414  0.735478  0.0052947  0.995775  0.999747

筛选差异基因,使用P值和LogFC进行筛选,这里我们就不多做解释,详情可以看我们前面的推文。

# 设置筛选标准
foldChange = 1
padj = 0.05
#
diffsig <- diff[(diff$pvalue < padj & abs(diff$log2FoldChange) > foldChange),]
dim(diffsig)
write.csv(diffsig, "All_diffsig.csv")

注:上调和下调的差异基因的筛选,我们在这里不在讲述,请查看我们前面的推文即可


6 差异基因热图

6.1 标准化Count值

我们后面的热图使用Count值进行分析,以及后续的分析也可以使用count值进行分析。我们的Count值是基因的原始表达量,因此需要进行标准化出来,我们这里使用vst函数进行标准化处理。

## 标准化(标准化Counts值) 
vsd <- vst(dds, blind = FALSE)
normalizeExp <- assay(vsd)

绘制差异基因热图

###  差异表达热图
df <- read.csv("All_diffsig.csv", header = T)
head(df)
df02 <- as.character(df$X)
## 标准化(标准化Counts值) 
vsd <- vst(dds, blind = FALSE)
normalizeExp <- assay(vsd)
## 
## 差异基因的Count
diff_expr <- normalizeExp[df02,]
head(diff_expr)
## 差异热图
library(pheatmap)
annotation_col <- data.frame(Group = factor(c(rep("CK",3), rep("Treat",3))))
rownames(annotation_col) <- colnames(diff_expr)

pdf("差异基因热图.pdf", height = 8, width = 12)
p <- pheatmap(diff_expr,
              annotation_col = annotation_col,
              color = colorRampPalette(c("green","black","red"))(50),
              cluster_cols = F,
              show_rownames = F,
              show_colnames = F,
              scale = "row", ## none, row, column
              fontsize = 12,
              fontsize_row = 12,
              fontsize_col = 6,
              border = FALSE)
print(p)
dev.off()
image.png

获取本章节数据和代码:关注微信公众号:小杜的生信筆記(ID:Du_Bioinformatics),回复关键词:DESeq2差异分析


“小杜的生信筆記” 公众号、知乎、简书、B站平台,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!

01.差异分析|使用limma包 - 简书
02. 差异分析--limma包 - 知乎
03.R语言差异分析 | limma包 (公众号)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容