代码工具 A new R package for detecting unusual time series

The anom­alous pack­age pro­vides some tools to detect unusual time series in a large col­lec­tion of time series. This is joint work with Earo Wang (an hon­ours stu­dent at Monash) and Niko­lay Laptev (from Yahoo Labs). Yahoo is inter­ested in detect­ing unusual pat­terns in server met­rics.
The pack­age is based on this paper with Earo and Niko­lay.
The basic idea is to mea­sure a range of fea­tures of the time series (such as strength of sea­son­al­ity, an index of spik­i­ness, first order auto­cor­re­la­tion, etc.) Then a prin­ci­pal com­po­nent decom­po­si­tion of the fea­ture matrix is cal­cu­lated, and out­liers are iden­ti­fied in 2-​​dimensional space of the first two prin­ci­pal com­po­nent scores.
We use two meth­ods to iden­tify outliers.
A bivari­ate ker­nel den­sity esti­mate of the first two PC scores is com­puted, and the points are ordered based on the value of the den­sity at each obser­va­tion. This gives us a rank­ing of most out­ly­ing (least den­sity) to least out­ly­ing (high­est density).
A series of

Rendered by QuickLaTeX.com
Rendered by QuickLaTeX.com
–con­vex hulls are com­puted on the first two PC scores with decreas­ing
Rendered by QuickLaTeX.com
Rendered by QuickLaTeX.com
, and points are clas­si­fied as out­liers when they become sin­gle­tons sep­a­rated from the main hull. This gives us an alter­na­tive rank­ing with the most out­ly­ing hav­ing sep­a­rated at the high­est value of
Rendered by QuickLaTeX.com
Rendered by QuickLaTeX.com
, and the remain­ing out­liers with decreas­ing val­ues of
Rendered by QuickLaTeX.com
Rendered by QuickLaTeX.com
.

I explained the ideas in a talk last Tues­day given at a joint meet­ing of the Sta­tis­ti­cal Soci­ety of Aus­tralia and the Mel­bourne Data Sci­ence Meetup Group. Slides are avail­able here. A link to a video of the talk will also be added there when it is ready.
The density-​​ranking of PC scores was also used in my work on detect­ing out­liers in func­tional data. See my 2010 JCGS paper and the asso­ci­ated rain­bow pack­age for R.
There are two ver­sions of the pack­age: one under an ACM licence, and a lim­ited ver­sion under a GPL licence. Even­tu­ally we hope to make the GPL ver­sion con­tain every­thing, but we are cur­rently depen­dent on the alphahull pack­age which has an ACM licence.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容