Apache Avro
是一个数据序列化框架,它通过定义json
风格的schema
文件来表示数据的格式
maven依赖
添加avro
依赖,和avro
自动生成代码插件maven
依赖
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.9.1</version>
</dependency>
As well as the Avro Maven plugin (for performing code generation):
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.9.1</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
如果有报snapy的错误可以添加如下依赖
<dependency>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
<version>1.1.7.3</version>
</dependency>
schema 文件
- 在
src/main
下面创建一个avro
的文件夹用于存放.avsc
的schema文件 - 在
src/main/avro
下创建一个user.avsc
文件
user.avsc
内容如下
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}
如下图编译会自动生成代码,代码生成的package
路径是由schema
文件中的namespace
指定的,类名由name
指定,如下图所示:
序列化和反序列化
- 使用生成的代码来进行序列化和反序列化
- 直接通过schema文件进行序列化和反序列化
使用生成的代码来进行序列化和反序列化demo
package example.avro;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import java.io.File;
import java.io.IOException;
public class SpecificMain {
public static void main(String[] args) throws IOException {
User user1 = new User();
user1.setName("Alyssa");
user1.setFavoriteNumber(256);
// Leave favorite color null
// Alternate constructor
User user2 = new User("Ben", 7, "red");
// Construct via builder
User user3 = User.newBuilder()
.setName("Charlie")
.setFavoriteColor("blue")
.setFavoriteNumber(null)
.build();
//***** 序列化 ********
DatumWriter<User> userDatumWriter = new SpecificDatumWriter<>(User.class);
DataFileWriter<User> dataFileWriter = new DataFileWriter<>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("/tmp/users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();
//***** 反序列化 ******
DatumReader<User> userDatumReader = new SpecificDatumReader<>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(new File("/tmp/users.avro"), userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}
}
}
直接通过schema文件进行序列化和反序列化demo
package example.avro;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericDatumWriter;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DatumWriter;
import java.io.File;
import java.io.IOException;
public class GenericMain {
public static void main(String[] args) throws IOException {
Schema schema = new Schema.Parser().parse(new File("user.avsc"));
GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Alyssa");
user1.put("favorite_number", 256);
// Leave favorite color null
GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 7);
user2.put("favorite_color", "red");
File file = new File("/tmp/myusers.avro");
DatumWriter<GenericRecord> datumWriter = new GenericDatumWriter<>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new DataFileWriter<>(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();
// Deserialize users from disk
DatumReader<GenericRecord> datumReader = new GenericDatumReader<>(schema);
DataFileReader<GenericRecord> dataFileReader = new DataFileReader<>(file, datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}
}
}