射线与立方体相交

和立方体相交和前两个相交测试比起来略微有点难度,我们先从标准的AABB开始,了解思路之后再推到OBB的情况。

射线和AABB相交

AABB是轴向对齐包围盒的缩写,因此AABB的边界会和坐标轴平行,相较OBB起来比较简单。依旧是从2D的情况开始分析,这样连z轴都少了,如法炮制,看图说话:

![射线和正方形相交][ray-box]

相交

我们先来看相交的情况。可以这么看,包围盒的左右边界的两条直线,和ray相交,截出一条线段,交点为 tx0, tx1(我们以交点在射线上的 t 值来代替交点)。如果这条被截取的线段发生如下情况:

  1. 和上下边界的直线有交点,则有交点 tx0 < ty < tx1 如下情况
  • tx0 < ty0 < ty1 < tx1; (和两条边界相交)
  • tx0 < ty1 < tx1; (和下边界相交,且 ty0 < tx0),
  • tx0 < ty0 < tx1; (和上边界相交,且 tx1 < ty1)
  • 在上下边界的直线的区间内,可以交换着看,被上下边界截出来的线段,和左右边界有交点,然后按照情况1分析。

就说明射线和包围盒相交了,那么真正的交点应该是:

t0 = min(tx0, ty0);
t1 = min(tx1, ty1);

不相交

然而射线不会一直和AABB相交,看图中上下两条射线,tx1' < ty0' 或者 ty1' < tx0' 的时候,射线就不会相交,注意,同时成立的还有 tx0' < tx1', ty0' <ty1。那么结合相交的最后情况,就能判断相交情况。

  1. 求出交点 tx0, tx1, ty0, ty1
  • t0 = min(tx0, ty0);
  • t1 = min(tx1, ty1);
  • if( t1 < t0 ) 射线与包围盒不相交

计算交点。

AABB的边界和坐标轴平行,因此AABB的四条边界方程大概是这样的:

// X0、X1、Y0、Y1为常数
// 且 X0 < X1, Y0 < Y1
x = X0;    (方程1)
x = X1;
y = Y0;
y = Y1;

接下来就是联立方程了,因为 x=C 这样的方程,y是任意的,所以不太好联立,同时我们知道射线方程: P(t) = O + D·t是向量的写法,我们可以试着把向量展开,就能得到2个式子(这里我们还在假设2D情况)

Px(t) = Ox + Dx·t;     (方程2)
Py(t) = Oy + Dy·t;

联立方程1与方程2,就能得到4个交点。

tx0 = (X0 - Ox) / Dx;
tx1 = (X1 - Ox) / Dx;
ty0 = (Y0 - Ox) / Dy;
ty1 = (Y1 - Ox) / Dy;

值得注意的是, 当Dx 或者 Dy 为零,这个等式似乎不太好在代码中实施,这意味着射线的方向和轴是平行的,交点肯定是不存在的。我们得针对平行的情况单独做处理。

相交测试

if( fabs(Dx) < FLOAT_EPSILON ) //射线和Y轴平行
    return Oy < Y1 && Oy > Y0;
else ( fabs(Dy) < FLOAT_EPSILON ) //射线平行X轴
    return Ox < X1 && Ox > X0;
else
{
    tx0 = (X0 - Ox) / Dx;
    tx1 = (X1 - Ox) / Dx;
    ty0 = (Y0 - Ox) / Dy;
    ty1 = (Y1 - Ox) / Dy;
    t0 = max(tx0, ty0);
    t1 = min(tx1, ty1);
    return (t0 < t1);
}
//其实根据IEEE的特性,可以先计算1/Dx,得到一个无穷数
//再去用 invDx去乘 X0-Ox作为优化
//但是水平有限,不太好说明这个问题,而且这个优化需要依赖编译器
//等以后弄清楚了再聊

上头的测试有2个问题

  1. 当Dx或者Dy为负数的时候,t0 > t1。射线反向,先交x=X1再交x=X0我们需要t0是近点,t1是远点,所以这里还需要做下符号判断。
  • 当近点 t0 < 0时,说明射线是在盒子内部的,但当时 远点 t1 < 0 时候,就说明射线是在负方向与盒子相交了。

所以我们稍作修改

if(Dx < 0)
{
    tx1 = (X0 - Ox) / Dx;
    tx0 = (X1 - Ox) / Dx;
}
else
{
    tx0 = (X0 - Ox) / Dx;
    tx1 = (X1 - Ox) / Dx;
}
....//omiitted
if(t0 > t1)
    return false;
else if (t0 < 0)
{
    if (t1 < 0)
        return false;
    t0 = t1;
}
return true;

AABB code

基本到这里,2D的射线-盒子相交检测就完工了。我们试着推导到3D的情况。 当在一个平面上有相交的情况,只要在剩下的两个平面(三个轴三个平面)中的其一,用相同的办法算出有相交情况就能确定射线和立方体的相交情况了。在这种情况下需要测试三个分支代码不太好书写,所以得换个思路从不相交判断上更容易书写,下面动手实操。

class AABB
{
    GetExtend() { return Vector3(width, height, depth); }
    GetCenter() { return Vector3(Cx, Cy, Cz); }
}

float t0[3];
float t1[3];
float tmin, tmax;
bool tinit = false;
for(int i = 0; i < 3; i++)
{
    //先测试平行的情况,分别取出Dx,Dy,Dz来判断
    if( fabs(D[i] ) < FLOAT_EPSILON )
        //在区间之外
        if( fabs( O[i] - aabb.GetCenter()[i] ) > aabb.GetExtend()[i])
            return false;
    else //不平行的话,就试试算个交点
    {
        if( D[i] > 0)
        {
            t0[i] = ( aabb.GetCenter()[i] - aabb.GetExtend()[i] - O[i] ) / D[i];
            t1[i] = ( aabb.GetCenter()[i] + aabb.GetExtend()[i] - O[i] ) / D[i];
        }
        else
        {
            t0[i] = ( aabb.GetCenter()[i] + aabb.GetExtend()[i] - O[i] ) / D[i];
            t1[i] = ( aabb.GetCenter()[i] - aabb.GetExtend()[i] - O[i] ) / D[i];
        }

        //if( t1[i] < t[0] ) //这个说明碰到射线反方向了,两个都为负数才会这样
        //    return false; //这个挪到 tinit里头也能判断,同时还判断了界外

        if( tinit )
        {
            if( tmin < t0[i] ) tmin = t0[i];
            if( tmax > t1[i] ) tax = t1[i];
            if( tmin  < tmax )
                return false;
        }
        else
        {
            tmin = t0[i];
            tmax = t1[i];
            tinit = true;
        }
    }
}
if( tmax < 0 ) return false;
return true;

OBB

立方体可以用3个方向轴(就是xyz)和在在轴上的长度(就是width height depth)来定义。AABB三个轴会一直保持 x<1,0,0>, y<0,1,0> z<0,0,1>,而OBB除了三个轴向不同之外,别的都和AABB差不多的,我们的思路是把Ray射线投影到立方体的三个轴上,按照AABB的测试方法去做检测。(待续),按照AABB往OBB的情况推导的话,有如下定义:

class Box
{
    GetAxisX()  { return Vector3(1, 0, 0); }
    GetAxisY()  { return Vector3(0, 1, 0); }
    GetAxisZ()  { return Vector3(0, 0, 1); }
    GetExtend() { return Vector3(width, height, depth); }
    GetCenter() { return Vector3(Cx, Cy, Cz); }
}

最终代码如下:

bool Intersect(const Ray& ray, const Box& box, float& t0, float& t1)
{
    int parallelMask = 0;
    bool found = false;

    Vector3 dirDotAxis;
    Vector3 ocDotAxis;

    Vector3 oc = box.GetCenter() - ray.GetOrigin();
    Vector3 axis[3] = { box.GetAxisX(), box.GetAxisY(), box.GetAxisZ() };
    for (int i = 0; i < 3; ++i)
    {
        dirDotAxis[i] = dot(ray.GetDirection(), axis[i]);
        ocDotAxis[i] = dot(oc, axis[i]);

        if (fabs(dirDotAxis[i]) < FLOAT_EPISLON)
        {
            //垂直一个方向,说明与这个方向为法线的平面平行。
            //先不处理,最后会判断是否在两个平面的区间内
            parallelMask |= 1 << i;
        }
        else
        {
            float es = (dirDotAxis[i] > 0.0f) ? box.GetExtend()[i] : -box.GetExtend()[i];
            float invDA = 1.0f / dirDotAxis[i]; //这个作为cos来使用,为了底下反算某轴向方向到 中心连线方向的长度
            if (!found)
            {
                // 这一步骤算出在轴向方向上,连线和平面的交点。
                // 这个平面的法线=轴
                t0 = (ocDotAxis[i] - es) * invDA;
                t1 = (ocDotAxis[i] + es) * invDA;
                found = true;
            }
            else
            {
                float s = (ocDotAxis[i] - es) * invDA;
                if (s > t0)
                {
                    t0 = s;
                }
                s = (ocDotAxis[i] + es) * invDA;
                if (s < t1)
                {
                    t1 = s;
                }
                if (t0 > t1)
                {
                    //这里 intersect0代表就近点, intersect1代表远点。
                    //t0 > t1,亦近点比远点大
                    //表明了 两个t 都是负数。
                    //说明了obb是在射线origin的反方向上。
                    //或者是在偏移到外部擦身而过了
                    return false;
                }
            }
        }
    }
    if (parallelMask)
    {
        for (int i = 0; i < 3; ++i)
        {
            if (parallelMask & (1 << i))
            {
                if (fabs(ocDotAxis[i] - t0 * dirDotAxis[i]) > box.GetExtend()[i] ||
                fabs(ocDotAxis[i] - t1 * dirDotAxis[i]) > box.GetExtend()[i])
                {
                    return false;
                }
            }
        }
    }
    //t1 < t0已经在最上头被短路了
    if (t0 < 0)
    {
        if (t1 < 0)
        {
            return false;
        }
        t0 = t1;
    }

    return true;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • Problem Formulation Ray Tracing的目标是生成一张包含场景内物体,具有真实感的图像,因...
    Manster阅读 8,862评论 4 8
  • 201. M-Q型显影液组合是()。 (2.0 分) A. 米吐尔与菲尼酮的组合 B. 对苯二酚和菲尼酮的组合 C...
    我们村我最帅阅读 3,306评论 0 4
  • 今天来说说射线和球的相交检测。 从图形来说 ![射线和圆相交, origin是射线起点, dir是射线的方向向量。...
    goteet阅读 7,107评论 0 4
  • 无法忍受自己的一些缺点,虽然也想要改变,但并没有认真去分析、整理,制定克服计划,总之,应了中国的老话“江山易改,禀...
    花下锄月阅读 227评论 2 3
  • 互联网思维最近比较热,严格说来已经热了很长时间了,自从互联网思维被提出来以后,传统行业都很恐慌,大批大批的...
    陆小西阅读 358评论 1 3