深度学习之MNIST数据集识别(四)

MNIST

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.

MNIST数据库的文件格式

数据以非常简单的文件格式存储,用于存储矢量和多维矩阵。
文件中的所有整数都以大多数非英特尔处理器使用的MSB优先(高端)格式存储。英特尔处理器和其他低端机器的用户必须翻转标头的字节。

有4个文件:

train-images-idx3-ubyte:training set images
train-labels-idx1-ubyte:training set labels
t10k-images-idx3-ubyte:test set images
t10k-labels-idx1-ubyte:test set labels

训练集包含60000个示例,测试集包含10000个示例。

测试集的前5000个示例取自原始NIST训练集。最后的5000个来自原始的NIST测试集。第一个5000比过去5000更干净,更容易。

TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9.

TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

TEST SET LABEL FILE (t10k-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 10000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9.

TEST SET IMAGE FILE (t10k-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 10000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

所以对于训练集(train-images-idx3-ubyte:training set images )数据的偏移量从offset 0016开始。而标签集(train-labels-idx1-ubyte)数据的偏移量是从offset 0008开始的。

将读取的数据转化成数字保存到列表中,然后使用matplotlib输出一下效果。

代码

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import struct
from bp import *
from datetime import datetime
import matplotlib.pyplot as plt

# 数据加载器基类
class Loader(object):
    def __init__(self, path, count):
        '''
        初始化加载器
        path: 数据文件路径
        count: 文件中的样本个数
        '''
        self.path = path
        self.count = count
    def get_file_content(self):
        '''
        读取文件内容
        '''
        f = open(self.path, 'rb')
        content = f.read()
        f.close()
        return content
    def to_int(self, byte):
        '''
        将unsigned byte字符转换为整数
        '''
        return struct.unpack('B', byte)[0]
# 图像数据加载器
class ImageLoader(Loader):
    def get_picture(self, content, index):
        '''
        内部函数,从文件中获取图像
        '''
        ##从偏移量位置开始读取有效数据
        start = index * 28 * 28 + 16

        picture = []
        for i in range(28):
            picture.append([])
            for j in range(28): 
                picture[i].append(
                    self.to_int(content[start + i * 28 + j]))
        #picture 结构 二位数组 28*28
        return picture
    def load_image(self):
        '''
        加载数据文件,获得全部样本的输入向量
        '''
        #读取所有的图片样本
        content = self.get_file_content()
        data_set = []
        for index in range(self.count):
            data_one = [];
            data_one = self.get_picture(content, index);
            data_set.append(data_one);
        #data_set 格式 [[图1][图2]]  图1=[[][][]]=28*28
        return data_set
# 标签数据加载器
class LabelLoader(Loader):
    def load(self):
        '''
        加载数据文件,获得全部样本的标签向量
        '''
        content = self.get_file_content()
        labels = []
        for index in range(self.count):
            labels.append(self.to_int(content[index + 8]));
        return labels

def get_training_image():
    '''
    获得训练数据集
    '''
    image_loader = ImageLoader('train-images.idx3-ubyte', 1000)
    label_loader = LabelLoader('train-labels.idx1-ubyte', 1000)
    return image_loader.load_image(), label_loader.load()

if __name__ == '__main__':
    #获取图片和标识集
    x_train,y_train = get_training_image();
    #构建子图
    fig, ax = plt.subplots(nrows=2,ncols=5,sharex=True,sharey=True,);
    ax = ax.flatten();

    for index in range(10):
        for j in range(len(y_train)):
            if y_train[j] == index:
                img = x_train[j];
                ax[index].imshow(img, cmap='Greys', interpolation='nearest');
                break;

    ax[0].set_xticks([])
    ax[0].set_yticks([])
    plt.tight_layout()
    plt.show()
   

执行结果

参考

零基础入门深度学习(3) - 神经网络和反向传播算法
https://www.zybuluo.com/hanbingtao/note/476663
详解 MNIST 数据集
https://blog.csdn.net/simple_the_best/article/details/75267863

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容