ControINet其他模型

1、mlsd:这个模型只能识别直线,用来做建筑设计比较好

2、normal:这个模型主要是参考原图的明暗度,以及人物的姿势

3、Lineart:和canny、soft edge类似,对线条进行检测。有下面这几种模式:动漫:lineart_anime或lineart_anime denoise、素描:lineart_coarse、写实:lineart_realistic、黑白线稿:lineart_standard

4、seg:检测小的物品

5、shufell:检测图片的颜色

6、tile:增加图片细节

7、Inpaint:类似局部重绘

8、ip2p:加入特效

9、Reference:检测图片的画风和角色

10、t2ia:还原颜色

ControINet模型总结

ControINet名为控制网,本质就是通过检测图片的某种特征对生成的图片进行控制。

ControINet模型主要控制的内容有这几种:线条(canny、lineart、soft edge、mlsd/仅直线、scribble)、人物姿势(open pose)、空间深度(depth)、物品类型(seg)、风格颜色(shuffle、reference、normal、t2ia)、重绘(Inpaint、tile/加入细节)、特效(ip2p)。

这些不同的控制可以让我们对图片的生成有一定的控制,我们可以根据自己的需要进行选择。

但目前SD出图更多时候还是要靠抽卡,ControINet模型只是在一定程度上提高了抽卡的概率。

不过相信随着AI的飞速发展,我们之后可以更轻松地实现把脑中的图片画出来。

ControINet模型的复合应用

我们知道ControINet被称为控制网,既然是网络就是可以综合运用的。我们可以同时使用两到三个或者更多的ControINet模型去对图片进行更深入的控制。

比如:当人物的肢体有交叠时,就可以让open pose+depth一起运用,既可以检测人物的姿势,同时也能检测到哪个肢体在前,那个肢体在后,实现对图片的更高度控制。

当然,还有很多模型的复合应用,比如canny+depth,可以在刻画建筑时,即兼顾到建筑的空间深度,又能兼顾到建筑的线条,会让图片更加符合我们的需求。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容