01.loc & iloc & ix 区别

当用行号索引的时候, 尽量用 iloc 来进行索引; 而用标签索引的时候用 loc , ix 尽量别用。

使用标签选取数据

df.loc[行标签,列标签]
df.loc['a':'b']#选取ab两行数据
df.loc[:,'one']#选取one列的数据

df.loc的第一个参数是行标签,第二个参数是列标签(可选参数,默认为所有列标签),两个参数既可以是列表也可以是单个字符,如果两个参数都为列表则返回的是DataFrame,否则为Series。

  • loc根据DataFrame的具体标签选取列。
  • iloc根据标签所在位置选取列,从0开始计数。

loc:通过行标签索引行数据

import pandas as pd  
data = [[1,2,3],[4,5,6]]  
index = ['d','e']  
columns=['a','b','c']  
df = pd.DataFrame(data=data, index=index, columns=columns)

Out[3]: 
   a  b  c
d  1  2  3
e  4  5  6

df.loc['d']
Out[4]: 
a    1
b    2
c    3
Name: d, dtype: int64

df.iloc[0]
Out[5]: 
a    1
b    2
c    3
Name: d, dtype: int64

df3.iloc[1]
Out[6]: 
a    4
b    5
c    6
Name: e, dtype: int64

df.loc['d':]
Out[7]: 
   a  b  c
d  1  2  3
e  4  5  6

#loc扩展:索引某行某列
df.loc['d',['b','c']]
Out[8]: 
b    2
c    3
Name: d, dtype: int64

#loc扩展:索引某列
df.loc[:,['c']]
Out[13]: 
   c
d  3
e  6

获取某列数据最直接方式是df.[列标签],但当列标签未知时可以通过这种方式获取列数据。需要注意,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。

iloc:通过行号获取行数据

import pandas as pd  
data = [[1,2,3],[4,5,6]]  
index = ['d','e']  
columns=['a','b','c']  
df = pd.DataFrame(data=data, index=index, columns=columns)

Out[15]: 
   a  b  c
d  1  2  3
e  4  5  6

#要获取哪一行就输入该行数字
df.iloc[1]
Out[17]: 
a    4
b    5
c    6
Name: e, dtype: int64

#通过行标签索引会报错
df3.iloc['a']
TypeError: cannot do positional indexing on 
<class 'pandas.core.indexes.base.Index'> 
with these indexers [a] of <class 'str'>

#通过行号可以索引多行
df3.iloc[0:]
Out[19]: 
   a  b  c
d  1  2  3
e  4  5  6

#iloc索引列数据
df3.iloc[:,[1]]
Out[21]: 
   b
d  2
e  5

ix:结合前两种的混合索引

import pandas as pd  
data = [[1,2,3],[4,5,6]]  
index = ['d','e']  
columns=['a','b','c']  
df = pd.DataFrame(data=data, index=index, columns=columns)

Out[22]: 
   a  b  c
d  1  2  3
e  4  5  6

#通过行号索引
df.ix[1]
Out[23]: 
a    4
b    5
c    6
Name: e, dtype: int64

#通过行标签索引
df.ix['e']
Out[25]: 
a    4
b    5
c    6
Name: e, dtype: int64
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容