「r<-包」UCSCXenaTools: Retrieve Gene Expression and Clinical Information from UCSC Xena for Surviva...

The UCSC Xena platform provides an unprecedented resource for public omics data from big projects like The Cancer Genome Atlas (TCGA), however, it is hard for users to incorporate multiple datasets or data types, integrate the selected data with popular analysis tools or homebrewed code, and reproduce analysis procedures. To address this issue, we developed an R package UCSCXenaTools for enabling data retrieval, analysis integration and reproducible research for omics data from the UCSC Xena platform1.

In this technote we will outline how to use the UCSCXenaTools package to pull gene expression and clinical data from UCSC Xena for survival analysis.

For general usage of UCSCXenaTools, please refer to the package vignette. Any bug or feature request can be reported in GitHub issues.

Installation

UCSCXenaTools is available from CRAN:

install.packages("UCSCXenaTools")

Alternatively, the latest development version can be downloaded from GitHub:

remotes::install_github("ropensci/UCSCXenaTools", build_vignettes = TRUE, dependencies = TRUE)

How it works

Before actually pulling data, understanding how UCSCXenaTools works (see Figure 1) will help users locate the most important function to use.

Generally,

  • for operating datasets, we use functions whose names start with Xena
  • for operating subset of a dataset, we use functions whose names start with fetch_
image

Figure 1. The UCSCXenaTools pipeline

We will provide an example illustrating how to use UCSCXenaTools to study the effect of expression of the KRAS gene on prognosis of Lung Adenocarcinoma (LUAD) patients. KRAS is a known driver gene in LUAD. We retrieve expression data for the KRAS gene and survival status data for LUAD patients from the TCGA and use these as input to a survival analysis, frequently used in cancer research.

Download data

First we get information on all datasets in the TCGA LUAD cohort and store as luad_cohort object.

suppressMessages(library(UCSCXenaTools))
suppressMessages(library(dplyr))
luad_cohort = XenaData %>%
  filter(XenaHostNames == "tcgaHub") %>% # select TCGA Hub
  XenaScan("TCGA Lung Adenocarcinoma")   # select LUAD cohort

luad_cohort
#> # A tibble: 27 x 17
#>    XenaHosts XenaHostNames XenaCohorts XenaDatasets SampleCount DataSubtype
#>    <chr>     <chr>         <chr>       <chr>        <chr>       <chr>      
#>  1 https://… tcgaHub       TCGA Lung … RABIT/separ… 467         Transcript…
#>  2 https://… tcgaHub       TCGA Lung … RABIT/separ… 120         Transcript…
#>  3 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 151         DNA methyl…
#>  4 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 492         DNA methyl…
#>  5 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 516         copy numbe…
#>  6 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 543         somatic mu…
#>  7 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 237         protein ex…
#>  8 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 576         gene expre…
#>  9 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 60          miRNA matu…
#> 10 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 576         gene expre…
#> # … with 17 more rows, and 11 more variables: Label <chr>, Type <chr>,
#> #   AnatomicalOrigin <chr>, SampleType <chr>, Tags <chr>, ProbeMap <chr>,
#> #   LongTitle <chr>, Citation <chr>, Version <chr>, Unit <chr>,
#> #   Platform <chr>

Download clinical dataset

Now we download the clinical dataset of the TCGA LUAD cohort and load it into R.

cli_query = luad_cohort %>%
  filter(DataSubtype == "phenotype") %>%  # select clinical dataset
  XenaGenerate() %>%  # generate a XenaHub object
  XenaQuery() %>%
  XenaDownload()
#> This will check url status, please be patient.
#> All downloaded files will under directory /var/folders/mx/rfkl27z90c96wbmn3_kjk8c80000gn/T//Rtmp2ihvVq.
#> The 'trans_slash' option is FALSE, keep same directory structure as Xena.
#> Creating directories for datasets...
#> Downloading TCGA.LUAD.sampleMap/LUAD_clinicalMatrix.gz

cli = XenaPrepare(cli_query)

# See a few rows
head(cli)
#> # A tibble: 6 x 157
#>   sampleID ABSOLUTE_Ploidy ABSOLUTE_Purity AKT1  ALK_translocati… BRAF
#>   <chr>              <dbl>           <dbl> <chr> <chr>            <chr>
#> 1 TCGA-05…           NA              NA    <NA>  <NA>             <NA>
#> 2 TCGA-05…            3.77            0.46 none  <NA>             p.A7…
#> 3 TCGA-05…           NA              NA    <NA>  <NA>             <NA>
#> 4 TCGA-05…           NA              NA    none  <NA>             p.L6…
#> 5 TCGA-05…            2.04            0.48 none  <NA>             none
#> 6 TCGA-05…            3.29            0.48 none  <NA>             p.G4…
#> # … with 151 more variables: CBL <chr>, CTNNB1 <chr>,
#> #   Canonical_mut_in_KRAS_EGFR_ALK <chr>,
#> #   Cnncl_mt_n_KRAS_EGFR_ALK_RET_ROS1_BRAF_ERBB2_HRAS_NRAS_AKT1_MAP2 <chr>,
#> #   EGFR <chr>, ERBB2 <chr>, ERBB4 <chr>,
#> #   Estimated_allele_fraction_of_a_clonal_varnt_prsnt_t_1_cpy_pr_cll <dbl>,
#> #   Expression_Subtype <chr>, HRAS <chr>, KRAS <chr>, MAP2K1 <chr>,
#> #   MET <chr>, NRAS <chr>, PIK3CA <chr>, PTPN11 <chr>, Pathology <chr>,
#> #   Pathology_Updated <chr>, RET_translocation <chr>,
#> #   ROS1_translocation <chr>, STK11 <chr>,
#> #   WGS_as_of_20120731_0_no_1_yes <dbl>, `_EVENT` <dbl>,
#> #   `_INTEGRATION` <chr>, OS.time <dbl>, OS <dbl>, OS.unit <chr>,
#> #   `_PANCAN_CNA_PANCAN_K8` <chr>, `_PANCAN_Cluster_Cluster_PANCAN` <chr>,
#> #   `_PANCAN_DNAMethyl_LUAD` <chr>, `_PANCAN_DNAMethyl_PANCAN` <chr>,
#> #   `_PANCAN_RPPA_PANCAN_K8` <chr>, `_PANCAN_UNC_RNAseq_PANCAN_K16` <chr>,
#> #   `_PANCAN_miRNA_PANCAN` <chr>, `_PANCAN_mirna_LUAD` <chr>,
#> #   `_PANCAN_mutation_PANCAN` <chr>, `_PATIENT` <chr>, RFS.time <dbl>,
#> #   RFS <dbl>, RFS.unit <chr>, `_TIME_TO_EVENT` <dbl>,
#> #   `_TIME_TO_EVENT_UNIT` <chr>, `_cohort` <chr>,
#> #   `_primary_disease` <chr>, `_primary_site` <chr>,
#> #   additional_pharmaceutical_therapy <chr>,
#> #   additional_radiation_therapy <chr>,
#> #   additional_surgery_locoregional_procedure <chr>,
#> #   additional_surgery_metastatic_procedure <chr>,
#> #   age_at_initial_pathologic_diagnosis <dbl>,
#> #   anatomic_neoplasm_subdivision <chr>,
#> #   anatomic_neoplasm_subdivision_other <chr>, bcr_followup_barcode <chr>,
#> #   bcr_patient_barcode <chr>, bcr_sample_barcode <chr>,
#> #   days_to_additional_surgery_locoregional_procedure <dbl>,
#> #   days_to_additional_surgery_metastatic_procedure <dbl>,
#> #   days_to_birth <dbl>, days_to_collection <dbl>, days_to_death <dbl>,
#> #   days_to_initial_pathologic_diagnosis <dbl>,
#> #   days_to_last_followup <dbl>,
#> #   days_to_new_tumor_event_after_initial_treatment <dbl>,
#> #   disease_code <chr>, dlco_predictive_percent <dbl>,
#> #   eastern_cancer_oncology_group <dbl>, egfr_mutation_performed <chr>,
#> #   egfr_mutation_result <chr>, eml4_alk_translocation_method <chr>,
#> #   eml4_alk_translocation_performed <chr>,
#> #   followup_case_report_form_submission_reason <chr>,
#> #   followup_treatment_success <chr>, form_completion_date <chr>,
#> #   gender <chr>, histological_type <chr>,
#> #   history_of_neoadjuvant_treatment <chr>, icd_10 <chr>,
#> #   icd_o_3_histology <chr>, icd_o_3_site <chr>,
#> #   informed_consent_verified <chr>, initial_weight <dbl>,
#> #   intermediate_dimension <dbl>, is_ffpe <chr>,
#> #   karnofsky_performance_score <dbl>, kras_gene_analysis_performed <chr>,
#> #   kras_mutation_found <chr>, kras_mutation_result <chr>,
#> #   location_in_lung_parenchyma <chr>, longest_dimension <dbl>,
#> #   lost_follow_up <chr>, new_neoplasm_event_type <chr>,
#> #   new_tumor_event_after_initial_treatment <chr>,
#> #   number_pack_years_smoked <dbl>, oct_embedded <lgl>, other_dx <chr>,
#> #   pathologic_M <chr>, pathologic_N <chr>, pathologic_T <chr>,
#> #   pathologic_stage <chr>, pathology_report_file_name <chr>, …

Download KRAS gene expression

To download gene expression data, first we need to select the right dataset.

ge = luad_cohort %>%
  filter(DataSubtype == "gene expression RNAseq", Label == "IlluminaHiSeq")
ge
#> # A tibble: 1 x 17
#>   XenaHosts XenaHostNames XenaCohorts XenaDatasets SampleCount DataSubtype
#>   <chr>     <chr>         <chr>       <chr>        <chr>       <chr>      
#> 1 https://… tcgaHub       TCGA Lung … TCGA.LUAD.s… 576         gene expre…
#> # … with 11 more variables: Label <chr>, Type <chr>,
#> #   AnatomicalOrigin <chr>, SampleType <chr>, Tags <chr>, ProbeMap <chr>,
#> #   LongTitle <chr>, Citation <chr>, Version <chr>, Unit <chr>,
#> #   Platform <chr>

Now we fetch KRAS gene expression values.

# You can pass gene symbols to 'identifiers' option
# to obtain their values in a dataset.
# A matrix will be returned by 'fetch_dense_values' function
# with rows corresponding to genes,
# so here we extract the first row.
KRAS = fetch_dense_values(host = ge$XenaHosts,
                          dataset = ge$XenaDatasets,
                          identifiers = "KRAS",
                          use_probeMap = TRUE) %>%
  .[1, ]
#> -> Checking identifiers...
#> -> use_probeMap is TRUE, skipping checking identifiers...
#> -> Done.
#> -> Checking samples...
#> -> Done.
#> -> Checking if the dataset has probeMap...
#> -> Done. ProbeMap is found.

head(KRAS)
#> TCGA-69-7978-01 TCGA-62-8399-01 TCGA-78-7539-01 TCGA-50-5931-11
#>           10.25           10.29           10.82           10.29
#> TCGA-73-4658-01 TCGA-44-6775-01
#>           10.36           10.03

Merge expression data and survival status

Next, we join the two data.frame by sampleID and keep necessary columns. Here we focus on ‘Primary Tumor’ for simplicity.

merged_data = tibble(sampleID = names(KRAS),
                     KRAS_expression = as.numeric(KRAS)) %>%
  left_join(cli, by = "sampleID") %>%
  filter(sample_type == "Primary Tumor") %>%  # Keep only 'Primary Tumor'
  select(sampleID, KRAS_expression, OS.time, OS) %>%
  rename(time = OS.time,
         status = OS)

head(merged_data)
#> # A tibble: 6 x 4
#>   sampleID        KRAS_expression  time status
#>   <chr>                     <dbl> <dbl>  <dbl>
#> 1 TCGA-69-7978-01           10.2    134      0
#> 2 TCGA-62-8399-01           10.3   2696      0
#> 3 TCGA-78-7539-01           10.8    791      0
#> 4 TCGA-73-4658-01           10.4   1600      1
#> 5 TCGA-44-6775-01           10.0    705      0
#> 6 TCGA-44-2655-01            9.75  1324      0

Survival analysis

To study the effect of KRAS gene expression on prognosis of LUAD patients, we show two approaches:

  1. use Cox model to determine the effect when KRAS gene expression increases
  2. use Kaplan-Meier curve and log-rank test to observe the difference in different ofKRAS gene expression status, i.e. high or low

We will use package survival and survminer to create models and plot survival curves, respectively.

library(survival)
library(survminer)
#> Loading required package: ggplot2
#> Loading required package: ggpubr
#> Loading required package: magrittr

Cox model

fit = coxph(Surv(time, status) ~ KRAS_expression, data = merged_data)
fit
#> Call:
#> coxph(formula = Surv(time, status) ~ KRAS_expression, data = merged_data)
#>
#>                   coef exp(coef) se(coef)     z      p
#> KRAS_expression 0.2927    1.3400   0.1020 2.871 0.0041
#>
#> Likelihood ratio test=7.67  on 1 df, p=0.005604
#> n= 502, number of events= 183
#>    (12 observations deleted due to missingness)

We can find that patients with higher KRAS gene expression have higher risk (34% increase per KRAS gene expression unit increase), and the effect of KRAS gene expression is statistically significant (p<0.05).

If you know little about survival analysis, two blogs are recommended to read:

  1. Survival Analysis Basics
  2. Cox Proportional-Hazards Model

Risk between expression groups

We can also divide patients into two groups using KRAS median as a cutoff.

merged_data = merged_data %>%
  mutate(group = case_when(
    KRAS_expression > quantile(KRAS_expression, 0.5) ~ 'KRAS_High',
    KRAS_expression < quantile(KRAS_expression, 0.5) ~ 'KRAS_Low',
    TRUE ~ NA_character_
  ))

fit = survfit(Surv(time, status) ~ group, data = merged_data)

Then we can plot the survival curves for each group.

ggsurvplot(fit, pval = TRUE)

image

Figure 2. Kaplan-Meier curve. Survival probability vs Time (days)

The Kaplan-Meier plot shows what percent of patients are alive at a time point. We can clearly see that patients in ‘KRAS_Low’ group have better survival than patients in ‘KRAS_High’ group because the survival probability of ‘KRAS_High’ group is always lower than ‘KRAS_Low’ group over time (the unit is ‘day’ here). The difference between the two groups is statistically significant (p<0.05 by log-rank test).

Related project

XenaShiny, a Shiny project based on UCSCXenaTools, is under development by my friends and me.

Acknowledgements

We thank Christine Stawitz and Carl Ganz for their constructive comments. This package is reviewed by rOpenSci at https://github.com/ropensci/software-review/issues/315.


  1. Wang et al., (2019). The UCSCXenaTools R package: a toolkit for accessing genomics data from UCSC Xena platform, from cancer multi-omics to single-cell RNA-seq. Journal of Open Source Software, 4(40), 1627, https://doi.org/10.21105/joss.01627
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350