Eclat算法

1、核心思想:倒排序
2、只能用来发现频繁项集。
3、只扫描一次数据集

我发现了一个很好的博客

http://www.cnblogs.com/infaraway/p/6774521.html

里面详细对比了三种算法的思想以及python实现。

代码的实现也是来自那篇博客。

# -*- coding: utf-8 -*-


def eclat(prefix, items, min_support, freq_items):
    while items:
        # 初始遍历单个的元素是否是频繁
        key, item = items.pop()
        key_support = len(item)
        if key_support >= min_support:
            # print frozenset(sorted(prefix+[key]))
            freq_items[frozenset(sorted(prefix+[key]))] = key_support
            suffix = []  # 存储当前长度的项集
            for other_key, other_item in items:
                new_item = item & other_item  # 求和其他集合求交集
                if len(new_item) >= min_support:
                    suffix.append((other_key, new_item))
            eclat(prefix+[key], sorted(suffix, key=lambda item: len(item[1]), reverse=True), min_support, freq_items)
    return freq_items


def eclat_zc(data_set, min_support=1):
    """
    Eclat方法
    :param data_set:
    :param min_support:
    :return:
    """
    # 将数据倒排
    data = {}
    trans_num = 0
    for trans in data_set:
        trans_num += 1
        for item in trans:
            if item not in data:
                data[item] = set()
            data[item].add(trans_num)
    freq_items = {}
    freq_items = eclat([], sorted(data.items(), key=lambda item: len(item[1]), reverse=True), min_support, freq_items)
    return freq_items


if __name__ == '__main__':
    data_set = [['A', 'B', 'D', 'H'], ['A', 'B', 'E', 'I'], ['A', 'B', 'E', 'J'], ['A', 'C', 'F', 'G']]
    freq_items = eclat_zc(data_set, 2)
    print(freq_items)

这里只有一点要唠叨一下,如果你看了三篇文章,你仔细看了代码就会发现,三个实现代码里面对最小支持度的定义不一样。Apriori算法里面计算的是一个比例(在0~1之间,数字越大表示出现越频繁),FP-growth和Eclat算法里最小支持度指的是出现次数(大于等于1,数字越大表示出现次数越多)。
补充一个网址
https://blog.csdn.net/sanqima/article/details/51559120

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,193评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,306评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,130评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,110评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,118评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,085评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,007评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,844评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,283评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,508评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,395评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,985评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,630评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,797评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,653评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,553评论 2 352

推荐阅读更多精彩内容

  • 利用回归预测数值型数据 线性回归 前面讲的都是监督学习中的分类,训练出可以判断样本类别的模型,而回归的目的是预测数...
    我偏笑_NSNirvana阅读 9,578评论 4 50
  • ML & DM 集成学习 模型融合 ensemble http://wakemeup.space/?p=109 E...
    章鱼哥呀阅读 1,803评论 0 6
  • 会写这篇文字,感触是来源于之前写过的两篇日志。 几年前的文字,看完之后既陌生,又熟悉。 这一篇,没有意外的写的又是...
    豆豆貓阅读 1,255评论 2 95
  • 2017.11.1 好久不曾写字了,好多事情都要忘记了。 最近蓝灵迷上了《上下五千年》,每晚都要缠着我讲上几个故事...
    六月微尘阅读 81评论 1 0
  • 1. 如果我问你,你爱不爱自己?很多人肯定都会说“还用问吗,当然爱自己了”; 如果我再问你,你有没有经营好自己?...
    风信子在简书阅读 642评论 4 2