negative样本:IOU < 0.3,标签为:0 0 0 0 0
positive样本:IOU > =0.65,标签为:1 0.01 0.02 0.01 0.02
part样本:0.4 <= IOU < 0.65,标签为: -1 0.03 0.04 0.03 0.04
注意mtcnn的label加了回归框,训练时候的输出层要作修改:(回归框的作用还是很大的)
compute bbox reg label,其中x1,x2,y1,y2为真实的人脸坐标,x_left,x_right,y_top,y_bottom,width,height为预测的人脸坐标,
如果是在准备人脸和非人脸样本的时候,x_left,x_right,y_top,y_bottom,width,height就是你的滑动窗与真实人脸的IOU>0.65(根据你的定义)的滑动窗坐标。
offset_x1 = (x1 - x_left) / float(width)
offset_y1 = (y1 - y_top) / float(height)
offset_x2 = (x2 - x_right) / float(width)
offset_y2 = (y2 - y_bottom ) / float(height)
很多人可能会有一个疑问:就是训练的时候人脸样本时候回归框label的,但非人脸呢,这地方可以全给0。
代码:
import numpy as np
import cv2
import os
import numpy.random as npr
from utils import IoU
anno_file = "./wider_annotations/anno.txt"
im_dir = "/home/seanlx/Dataset/wider_face/WIDER_train/images"
neg_save_dir = "/data3/seanlx/mtcnn1/12/negative"
pos_save_dir = "/data3/seanlx/mtcnn1/12/positive"
part_save_dir = "/data3/seanlx/mtcnn1/12/part"
save_dir = "./pnet"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
f1 = open(os.path.join(save_dir, 'pos_12.txt'), 'w')
f2 = open(os.path.join(save_dir, 'neg_12.txt'), 'w')
f3 = open(os.path.join(save_dir, 'part_12.txt'), 'w')
with open(anno_file, 'r') as f:
annotations = f.readlines()
num = len(annotations)
print "%d pics in total" % num
p_idx = 0 # positive
n_idx = 0 # negative
d_idx = 0 # dont care
idx = 0
box_idx = 0
for annotation in annotations:
annotation = annotation.strip().split(' ')
im_path = annotation[0]
bbox = map(float, annotation[1:])
boxes = np.array(bbox, dtype=np.float32).reshape(-1, 4)
img = cv2.imread(os.path.join(im_dir, im_path + '.jpg'))
idx += 1
if idx % 100 == 0:
print idx, "images done"
height, width, channel = img.shape
neg_num = 0
while neg_num < 50:
size = npr.randint(12, min(width, height) / 2)
nx = npr.randint(0, width - size)
ny = npr.randint(0, height - size)
crop_box = np.array([nx, ny, nx + size, ny + size])
Iou = IoU(crop_box, boxes)
cropped_im = img[ny : ny + size, nx : nx + size, :]
resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
if np.max(Iou) < 0.3:
# Iou with all gts must below 0.3
save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
f2.write("12/negative/%s"%n_idx + ' 0\n')
cv2.imwrite(save_file, resized_im)
n_idx += 1
neg_num += 1
for box in boxes:
# box (x_left, y_top, x_right, y_bottom)
x1, y1, x2, y2 = box
w = x2 - x1 + 1
h = y2 - y1 + 1
# ignore small faces
# in case the ground truth boxes of small faces are not accurate
if max(w, h) < 40 or x1 < 0 or y1 < 0:
continue
# generate negative examples that have overlap with gt
for i in range(5):
size = npr.randint(12, min(width, height) / 2)
# delta_x and delta_y are offsets of (x1, y1)
delta_x = npr.randint(max(-size, -x1), w)
delta_y = npr.randint(max(-size, -y1), h)
nx1 = max(0, x1 + delta_x)
ny1 = max(0, y1 + delta_y)
if nx1 + size > width or ny1 + size > height:
continue
crop_box = np.array([nx1, ny1, nx1 + size, ny1 + size])
Iou = IoU(crop_box, boxes)
cropped_im = img[ny1 : ny1 + size, nx1 : nx1 + size, :]
resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
if np.max(Iou) < 0.3:
# Iou with all gts must below 0.3
save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
f2.write("12/negative/%s"%n_idx + ' 0\n')
cv2.imwrite(save_file, resized_im)
n_idx += 1
# generate positive examples and part faces
for i in range(20):
size = npr.randint(int(min(w, h) * 0.8), np.ceil(1.25 * max(w, h)))
# delta here is the offset of box center
delta_x = npr.randint(-w * 0.2, w * 0.2)
delta_y = npr.randint(-h * 0.2, h * 0.2)
nx1 = max(x1 + w / 2 + delta_x - size / 2, 0)
ny1 = max(y1 + h / 2 + delta_y - size / 2, 0)
nx2 = nx1 + size
ny2 = ny1 + size
if nx2 > width or ny2 > height:
continue
crop_box = np.array([nx1, ny1, nx2, ny2])
offset_x1 = (x1 - nx1) / float(size)
offset_y1 = (y1 - ny1) / float(size)
offset_x2 = (x2 - nx2) / float(size)
offset_y2 = (y2 - ny2) / float(size)
cropped_im = img[ny1 : ny2, nx1 : nx2, :]
resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
box_ = box.reshape(1, -1)
if IoU(crop_box, box_) >= 0.65:
save_file = os.path.join(pos_save_dir, "%s.jpg"%p_idx)
f1.write("12/positive/%s"%p_idx + ' 1 %.2f %.2f %.2f %.2f\n'%(offset_x1, offset_y1, offset_x2, offset_y2))
cv2.imwrite(save_file, resized_im)
p_idx += 1
elif IoU(crop_box, box_) >= 0.4:
save_file = os.path.join(part_save_dir, "%s.jpg"%d_idx)
f3.write("12/part/%s"%d_idx + ' -1 %.2f %.2f %.2f %.2f\n'%(offset_x1, offset_y1, offset_x2, offset_y2))
cv2.imwrite(save_file, resized_im)
d_idx += 1
box_idx += 1
print "%s images done, pos: %s part: %s neg: %s"%(idx, p_idx, d_idx, n_idx)
f1.close()
f2.close()
f3.close()