Google Earth Engine谷歌地球引擎求取每隔N天的遥感影像平均数

  本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,计算长时间序列遥感影像数据在多年中,在每一个指定天数的时间范围内的平均值的方法。

  本文是谷歌地球引擎(Google Earth Engine,GEE)系列教学文章的第二十篇,更多GEE文章请参考专栏:GEE学习与应用

  首先,我们来看一下本文需要实现的需求。现在我们希望,计算某个研究区域中,2022年内每一个8天的时间范围内,NDVI数据的平均值。换句话说,我们希望对于2022年的001天到008天内的全部NDVI数据计算平均值,然后再对009天到016天内的全部NDVI数据计算平均值,然后再对017天到024天内的全部NDVI数据计算平均值,依此类推。最后,我们对每一个8天范围内的平均值结果图像加以导出。这个需求和我们之前的获取表格文件每隔指定行数区域内的极值:Python实现有些类似,不过当时的文章中,我们是将遥感影像中某一个像元的多年数据提取到Excel中,且计算的是最大值;而在本文中,我们希望是对整个研究区域内的全部遥感影像加以指定间隔时期内数据的计算,且计算的是平均值

  明确了需求,我们即可开始代码的撰写。本文所用代码如下。

var year = ee.String("2022");
var ndvi = ee.ImageCollection("MODIS/MYD09GA_006_NDVI")
  .filterDate('2022-01-01', '2023-01-01')
  .select(["NDVI"]);
var chinaBoundary = ee.Geometry.Rectangle(70, 14, 137, 52);
var selectedDays = ee.List.sequence(1, 366, 8);

var filterAndClip = function(day) {
  var start = ee.Number(day);
  var end = start.add(7);
  var filtered = ndvi.filter(ee.Filter.calendarRange(start, end, 'day_of_year'))
    .map(function(image) {
      // print(start);
      // print(end);
      // return image.clip(chinaBoundary).reproject('EPSG:4326', null, 500);
    return image.clip(chinaBoundary)
    });
  // Map.addLayer(filtered, {}, 'NDVI');
  var filtered_mean = filtered.reduce(ee.Reducer.mean());
  // Map.addLayer(filtered_mean, {}, "NDVI_Mean");
  // return filtered;
  return filtered_mean;
  // return filtered.reduce(ee.Reducer.mean());
};

var ndvi_china = ee.ImageCollection([]);

for (var i = 0; i < selectedDays.length().getInfo(); i++) {
  var day = selectedDays.get(i);
  var filtered = filterAndClip(day);
  var exportParams = {
    image: filtered,
    description: year.cat(ee.Number(day).format('%03d')).getInfo(),
    folder: "ndvi_8_days_new",
    scale: 500,
    region: chinaBoundary,
    maxPixels: 10000000000000
  };
  Export.image.toDrive(exportParams);
  ndvi_china = ndvi_china.merge(filtered);
}

  首先,定义变量和数据源。其中,year是一个包含字符串值2022Earth Engine字符串对象,后面我们导出遥感影像的时候,需要将其作为导出文件的文件名前缀。ndvi是通过筛选日期和选择NDVI波段来创建的MODIS NDVI影像集合。chinaBoundary是本文中研究区域边界的矩形几何对象。selectedDays是一个包含从1366的数值列表,表示一年中每8天的时间间隔。

  随后,定义一个函数filterAndClip,用于筛选指定时间范围内的NDVI影像集合,并对每个影像进行边界裁剪;最后,它返回裁剪后影像集合的平均值。对于这个函数,首先,函数接受一个参数day,表示时间值。其次,将传入的时间值day转换为Earth Engine数值对象,分别存储在startend变量中;这里的day是一个整数,表示一年中的某个时间。接下来,使用ee.Filter.calendarRange函数对ndvi影像集合进行筛选,根据daystartend的值,筛选出位于指定时间范围内的影像;这里使用'day_of_year'参数表示筛选基于一年中的日期。随后,使用map函数对筛选后的影像集合中的每个影像进行边界裁剪;image.clip(chinaBoundary)将每个影像裁剪为中国边界范围内的部分。裁剪后的影像集合存储在filtered变量中。其次,使用reduce函数和ee.Reducer.mean()对裁剪后的影像集合进行平均值计算;filtered.reduce(ee.Reducer.mean())将每个像素位置的影像值取平均,生成一个表示平均值的影像。最后,函数返回裁剪和平均值计算后的影像集合filtered_mean

  接下来,创建一个空的影像集合ndvi_china,用于存储最后裁剪和筛选后的NDVI影像(但是我这里后面没有用上这个影像集合ndvi_china,之所以有这个是之前别的需求会用到,后来更换需求了但是代码这里没有删除)。

  其次,我们使用循环处理每个时间段。在循环中,我们遍历selectedDays列表中的每个时间值。对于每个时间值,我们调用filterAndClip函数来获取裁剪和筛选后的NDVI影像的平均值。

  然后,我们定义了导出参数exportParams,包括要导出的影像、描述、文件夹、比例尺、区域和最大像素数等。

  最后,我们使用Export.image.toDrive函数将筛选后的影像导出到Google Drive,并将其添加到ndvi_china影像集合中。

  执行上述代码,我们来看一下效果。这里需要注意,为了更好地展示代码的效果,运行时我将代码中如下所示位置的2Map.addLayer()函数取消注释了。

  首先,看一下“Inspector”。如下图所示,每一个NDVI_Mean图像(下图中下方的紫色框内),都是其上方8景图像(下图中上方的紫色框内)的平均值,也就是这8天的NDVI的平均值。不难看出,下图中上方的紫色框内,8景图像就是从当年第001天到第008天的NDVI,那么下图中下方的紫色框内就是从001天到008天的NDVI的平均值。

  其次,看一下“Tasks”。如下图所示,这一年内每隔8天的NDVI平均值结果图像都可以加以导出了。

  至此,大功告成。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容