基于谷歌地球引擎Google Earth Engine的Landsat遥感影像单窗算法地表温度LST反演

1 背景知识

  基于遥感数据的地表温度(LST)反演目前得到了广泛的应用,尤其是面向大尺度、长时间范围的温度数据需求,遥感方法更是可以凸显其优势。目前,基于各类遥感数据源的地表温度反演方法不断得以改进,精度亦不断提升。之前的博客,也分别基于不同角度对遥感数据温度反演的方法、原理以及具体操作加以详细介绍:

  博客1https://blog.csdn.net/zhebushibiaoshifu/article/details/113916152):基于ENVI的Landsat 7地表温度(LST)大气校正方法反演与地物温度分析。

  博客2https://blog.csdn.net/zhebushibiaoshifu/article/details/113918917):基于ENVI与ERDAS的Landsat 7 ETM+影像单窗算法地表温度(LST)反演。

  而利用遥感图像处理软件,对地表温度加以反演,其操作整体较为繁琐,尤其是需要处理大量遥感数据时,其数据下载、操作步骤与结果保存等,都是很大的问题。因此,本文介绍一种基于谷歌地球引擎(Google Earth Engine,GEE)的地表温度反演算法及其代码。

  该方法基于Landsat 4/5/7/8卫星反演地表温度。基于该算法,我们可以直接在GEE中获取遥感图像、计算LST,并选择下载结果文件,非常方便快捷。

  本文所依据的文献为:Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series,发表于Remote Sensing。大家可以查看:https://www.mdpi.com/2072-4292/12/9/1471

2 算法介绍

  该论文基于Statistical Mono-Window(SMW)算法,对地表温度加以求解。其中,简单地说,SMW算法即是通过简单的线性关系,对由单热红外波段所得的大气表观亮温地表温度之间的经验关系加以表示,从而计算得到LST。

<img src="https://img-blog.csdnimg.cn/20210226223108992.png">

3 代码

  代码在这里https://code.earthengine.google.com/?accept_repo=users/sofiaermida/landsat_smw_lst

  点击链接,浏览器将自动进入你的GEE帐号;而代码则将会自动出现在左侧"Script"的“Reader”中:

image

  其中,modules为计算LST的综合代码库,我们仅仅需要修改、运行其下方example_1.jsexample_2.js的内容即可;其中,依据作者的注释我们可以知道,example_1.js用以计算单时相LST,而example_2.js则为多时相LST。

  我们就以example_1.js为例。其中,在代码的这一部分:

// select region of interest, date range, and landsat satellite
var geometry = ee . Geometry . Rectangle([-8.91, 40.0, -8.3, 40.4]);
var satellite = 'L8' ;
var date_ start = '2018-05-15' ;
var date_ end =' 2018-05-31' ;
var use_ ndvi= true;

  由上到下分别是修改ROI区域(即需要计算LST的区域)、基于的卫星(即Landsat 4/5/7/8)、所依据遥感图像开始和结束的时间,以及是否引入NDVI计算。大家在实际操作时,依据自己的需要自行修改这部分内容即可。

4 效果

  在这里,我们将作者原定的位于美国的ROI修改为武汉市局部地区,以此为例执行代码,效果如下:

image

  其中,黑色区域是我的ROI,底图便是已经计算出的温度数据图层了(由此可知,代码默认计算整个可见范围的LST,这里的ROI仅仅是方便我们查看、对比感兴趣区域内是否各栅格点均有LST数据)。整个代码执行的过程仅仅需要几秒钟,和用遥感图像处理软件操作比起来真的快了很多。

  随后,依据需要自行选择下载结果数据的范围、保存方法等即可。是不是非常方便~

  最后,大家在使用上述代码时,也要记得按照论文作者的相关要求来哦,需要规范引用的场合要引用清楚,尊重大家的劳动成果。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容