JDK8-HashMap浅析

JDK8对HashMap的底层代码有进行优化,在原来的数组+链表的组合结构上,添加了红黑树的支持,提升了HashMap对数据操作的性能。就想看看其内部的大致实现,当然对网上很多关于hashmap的技术分享也进行参考和学习,还是挺有收获的,在此将自己对HashMap的理解做个笔记,仅供参考。。。

HashMap

由于JDK8中对HashMap进行了优化,主要就是在原来数组+链表的结构组合上,加上了这种数据结构,具体就是在hashmpa的数据添加中,当链到达一定数量后,就会对链进行树形转化,转化成红黑树

HashMap核心属性说明

一个类的属性,通常就是对象数据保存的容器,对象操作方法与这些属性密切相关,先大致弄清楚这些属性的含义,对方法的源代码理解会有帮助。

  • HashMap存储键值对的容器
    通过HashMap的源代码和我们对它的组成结构数组+链表+树可以知道,必然有一个数组,数组中存放的是链表节点,还可能会有树节点的结构表示:
//存放元数据的容器,数组
transient Node<K,V>[] table;

数组表示存放相同结构元素的容器,从上可知,存放的数据类型是Node,结合HashMap组合结构和源代码可知,这是表示链表节点的结构:

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        
        ....//省略
        
}

从结构可以看出,链上节点中包含4个属性:HashMap存储的key值、value值、key值生成的hash值、还有指向下一个节点的next对象。每个字段都有本身存在的意义和作用,其中:

  1. key/value分别就是在使用hashmap存入的键值对数据。
  2. next对象则是单向链表组成的基本元素,表示当前节点连接的下一个节点。
  3. hash字段的值,是根据hash(key)方法生成的整数,表示当前节点的哈希标记,用于定位保存key为键的对象所存放的数组位置和在调用get方法根据键key快捷查找节点。

并且,可以知道,创建一个链表节点需要的几个参数:节点的键值对和该节点哈希值、指向的下一个节点对象。
在JDK8,HashMap中还存在树形结构,当单链表过长(多少才叫长?)的时候,转换成树结构:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
    ....//
    
}

因为HashMap使用的是红黑树,该红黑树会在后续介绍,先要知道树通常最简单的二叉树,包含三个节点:父节点、左子树节点、右子树节点。红黑树在基本的树结构上,加了表示节点红黑颜色的boolean字段read

  • 存储数据默认初始化大小和最大容量
    既然知道了HashMap是由三大数据结构,那么针对数组是否有最大值、最小值的限定?真的单条链表是否对节点有长度限定?真的红黑树结构上的节点是否也有最大值、最小值限定?

针对数组长度最大值最小值限定,可以看到默认数组长度是16,最大值是2的32次方。

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;
  • 与HashMap数据容器扩容相关属性
    HashMap重新扩容也是很重要的一步,那什么时候数组需要扩容,依据的条件什么?扩容规则是什么?扩容对之前旧位置上的节点会有影响么?
transient int size;
int threshold;
final float loadFactor;
static final float DEFAULT_LOAD_FACTOR = 0.75f;

这里有个负载因子字段,用于与当前数组容器大小相乘得到阀值=数组长度x负载因子。边界值就是这个阀值,当当前数组容器中保存的节点数量大于该阀值就会进行扩容

也就是代码中size * loadFactorthreshold比较大小。默认负载因子是0.75。也就是默认当数组保存节点数量大于16 * 0.75=12的时候,数组容器就要进行扩容。扩容规则就是:容器长度扩充一倍

  • 数据容器链表转换成树相关属性
    针对单向链表和树互相转换边界,即为限定,当由于hash值散列不均,造成单条链表过长达到多长的时候,需要转换成红黑树。
    当单条链表长度超过8个节点的时候,就转换成红黑树结构,当红黑树节点小于6个节点的时候,就要转成链表。
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;

还有个参数,表示满足进行树形转换时,当前数组容量大小需要大于64才能进行,不然,需要通过resize方法扩容,并对之前数组上所有节点进行重新位置排列。

HashMap大致结构组成:
hashmap_structure_jdk8

HashMap常用方法详解

容器的常规操作也就是增删改查了。

  • 新增键值对:
    主要流程就是:
  1. 根据对键值进行hash计算得到存放数组位置下标。
  2. 判断指定下标位置数组内容是否为空,为空创建节点并存放在当前位置。成功添加返回
  3. 若是指定下标位置存在节点,则继续判断节点是链表还是树结构
  4. 若是树节点,则走添加树节点方法putTreeVal
  5. 若是链表,则遍历链表,在链尾增加节点,并判断节点数,是否需要树形转换
  6. 若是添加的节点值已经存在,则替换成新节点值,返回旧节点值。
  7. 若是在添加后有删除数组头节点需求,则可以重写protected方法afterNodeInsertion
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
//针对键值进行hash算法处理,得到代表该节点哈希属性的哈希值
//该哈希值在定位和比较查询过程中均有重要作用
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //1. 若是容器未进行初始化,则进行初始化,初始大小为16
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //2. 若是指定位置数组内未存放数据,则保存改数据到此处
    //定位位置是通过tab[i = (n - 1) & hash]来的
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        //3. 容器已经初始化并且数组位置已经存有数据
        Node<K,V> e; K k;
        //3.1 若是添加节点数据和tab[(n - 1) & hash]出相等,则替换成新值
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //3.2 若是所在链上已经是红黑树结构,则调用树添加节点规则
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
        //3.3 添加节点在链表上,则遍历查看是否匹配,未匹配则添加节点
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    //在添加节点过后,校验是否达到链表转换成树的要求
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

关于hash计算方法图解,如下图:参考自美团点评技术团队-Java 8系列之重新认识HashMap

hashmap算法图例

在链表节点的添加过程中,若是达到满足转成红黑树的条件(数组容量大于64并且链表节点树大于8),则需要调用方法treeifyBin进行红黑树处理:

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    //树形转换条件校验,若是容量太小,则扩容、并对节点重新排放
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
           // e代表的是哈希表中指定桶位置里链表节点,即为遍历的第一个节点
           // 要进行树形化,先要创建树节点,内容与传入的e节点值一样
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null) //确认树根节点
                hd = p;
            else {
                //双向链表关系,当前并不是树形结构
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
            //遍历链表,注意此时数组桶与树还没指定关系
        } while ((e = e.next) != null); 
        //将桶的第一个节点指向新建的红黑树根节点,那么该桶就是树形结构了,原来的链表就被抛弃了
        if ((tab[index] = hd) != null)
            hd.treeify(tab);//该方法内会将上面维护的双向链表节点转换成真正树形结构
    }
}
// For treeifyBin 新建树节点,由于链表节点和树节点属性值差不多,直接使用
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
    return new TreeNode<>(p.hash, p.key, p.value, next);
}

关于上述红黑树节点的添加,详情可以参考:HashMap 在 JDK 1.8 中新增的操作: 红黑树中添加元素 putTreeVal

添加元素流程图,如下图:参考美团点评技术团队-Java 8系列之重新认识HashMap

hashmap put方法执行流程图

  • 根据键值查找节点:
    因为添加节点会初见三种情况:直接保存在桶位置、保存在链表链尾、保存在树中。所以查询时候也会根据判断,在三种结构上进行遍历查找。
    如何判定是同一个节点?要根据节点的哈希值属性+key值即可快速匹配。
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
//根据计算键值的哈希值来查找
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        //首先查找桶位置上的头节点
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            //若是桶位置头节点不匹配,则遍历桶上的结构
            //若是树形结构,则按照树的遍历规则查找
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
            //若是链表结构,则是更为简单的遍历查找
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

比较复杂的就是在红黑树上的节点查找,也就是上面方法getTreeNode。
可以大致看看源代码,也就是从根节点在红黑树上根据哈希值和值对象来查找:
因为红黑树是一种弱平衡的有序二叉树,有序有序说明要根据节点的关键字进行排序,关键字就是每个节点中存储的hash值,直接根据查找对象的hash值来快速进行类似递归式的二分查找来匹配元素:

final TreeNode<K,V> getTreeNode(int h, Object k) {
     return ((parent != null) ? root() : this).find(h, k, null);
 }
 
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
     TreeNode<K,V> p = this;
     do {
         int ph, dir; K pk;
         TreeNode<K,V> pl = p.left, pr = p.right, q;
         //根据节点的哈希值判断是查找左子树还是右子树
         if ((ph = p.hash) > h)
             p = pl;
         else if (ph < h)
             p = pr;
         else if ((pk = p.key) == k || (k != null && k.equals(pk)))
             return p;
         else if (pl == null)
             p = pr;
         else if (pr == null)
             p = pl;
         else if ((kc != null ||
                   (kc = comparableClassFor(k)) != null) &&
                  (dir = compareComparables(kc, k, pk)) != 0)
             p = (dir < 0) ? pl : pr;
         else if ((q = pr.find(h, k, kc)) != null)
             return q;
         else
             p = pl;
     } while (p != null);
     return null;
}
  • 扩容操作:
    在JDK8针对HashMap的扩容还是有点意思的。什么时候进行扩容?扩容规则?扩容影响?
    扩容方法就是resize,也就是对数组进行加长。通常都是加长一倍,在容器初始化和容器内节点量大于阀值的时候就会扩容。扩容后,会对旧容器的所有节点进行重置,按照一定规则判断节点是保留还是移动存放。扩容基于写时复制思想,会新建一个容量的新数组,在把旧数组节点遍历处理到新数组上。

在扩容后,旧节点位置有两种可能:判断规则是(e.hash & oldCap) == 0
a. 保持位置不变的移动到新容器中
b. 移动到新数组位置[原数组下标+原数组容量]位置。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //扩容一倍(无符号左移1位,即x2)
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //阀值也要跟着改变
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    //扩容创建一个两倍大小的新数组容器
    
@SuppressWarnings
({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
    //遍历旧容器,把旧容器中所有节点都处理一次:是保存原位置还是移动新位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                //若节点是树节点,则要拆分处理
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                       //对链表上节点遍历处理
                        next = e.next;
                        //若是链表节点的hash值与旧容器大小相与为0,则位置保持不变的存放在新数组位置,反之存放在新数组下标[原数组下标+原数组容量]位置上
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到新的bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到新的bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

关于原节点位置索引变化规则,可以参考下面两张图(图片来自:美团点评技术团队):

其中,图(a)表示扩容前key1和key2两种key确定索引位置的事例;
图(b)表示扩容后key1和key2两者key确定索引实例,其中hash1是key1的hashcode高16位与底16位的异或运算结果:

hashmap1.8算法图例1

在扩容重新计算hash之后,因为n变成2倍,那么n-1的mask范围在高位多1位(红色),因此新的节点位置索引就是[原索引位置+原容量大小],这也就解释得通,为什么在判断节点是否需要变换位置的时候是通过n & hash是否等于0来决定了。(也就是仅仅判断图b上key2对应第五位上是否是1)
关于上述红黑树节点的拆分,详情可以参考:HashMap 在 JDK 1.8 中新增的操作: 树形结构修剪 split

主要的新增、删除、修改操作大致流程:

  1. 确定起始头节点也就是桶位置的节点
  2. 桶位置节点不为null并且新处理的节点与头节点匹配、之间简单操作
  3. 新处理节点与桶节点不匹配,遍历树TreeNode或者链表Node进行处理。
  4. 处理完成修改容量、修改次数、重新调整结构。

红黑树

  • 什么是红黑树?
    红黑树本质上是一种自平衡二叉查找树,但是它在二叉查找树基础上额外添加了颜色标记(红与黑),同时制定一些符合红黑树的规则,这些规则保证了红黑树的弱平衡:在插入、删除、查找的最坏时间复杂度都是O(logn)。

从定义大概可以知道几点:

  1. 为什么说是自平衡?如何实现自平衡?
    平衡是相对排序作为前提的,即红黑树也是有序二叉查找树,二叉说明红黑树树结构至多只有2个子树(左子树和右子树)。弱平衡是相比AVL而言的,自平衡意味着:当添加和删除节点不满足红黑树要求的时候,会通过左旋右旋来操作节点使得树还是红黑树。

  2. 红黑树有什么性质和要求?

      1. 每个节点都是有色的,要么红色要么黑色。
      2. 根节点永远是黑色的。
      3. 所有的叶节点都是黑色的。(注意在不同场景下,对叶子节点定义的不同)
      4. 每个红色节点的两个子节点一定都是黑色的。
      5. 从任一节点到其子树中每个节点的路径都包含相同数量的黑色节点。
    
  3. 红黑树生成的目地是?解决什么问题?
    那么为什么要定义红黑树,因为该算法在最坏情况下的运行时间也是非常良好的,并且在实践中是高效的:可以在O(logN)时间复杂度内做查找,插入和删除。(其中N为树中节点数目),就是提高有序二叉树的查找、删除、添加效率

  • 为什么HashMap要使用红黑树?
    因为传统HashMap底层是使用数组+链表方式存储数据,并且是使用链接法来解决hash冲突的,会导致出现一种最坏情况:
    当哈希表由于多次碰撞,导致单个桶上的链表个数无限增长,那么对该map的查找的时间复杂度就是O(n)了,为了尽可能的提高查找效率,新引入了红黑树结构来提升性能,因为该算法的查找的最坏时间复杂度是O(logn),显然的O(logn) < O(n),带来的代价就是:
    需要维护链表和红黑树的转换,和本身红黑树在新增、删除节点时候带来的结构调整左旋和右旋等开销。

  • 红黑树有那些常规操作,在HashMap源代码中是如何体现的?
    针对红黑树在HashMap底层结构如何关联的,在上述代码已经表述清楚。这里,主要看看红黑树自平衡的左旋和右旋节点操作实现:

    HashMap中针对指定节点左旋和右旋操作源代码如下:(最好方式结合图看源代码)
    针对节点X:


    红黑树左旋右旋.png

a. 左旋
针对节点X的左旋,按照代码步骤在图中做出标注:先不考虑节点颜色,关注点在于节点的调整,且没有将图细化出节点的双向关系,仅仅是单向

左旋节点图.png

static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                      TreeNode<K,V> p) {
    TreeNode<K,V> r, pp, rl;
    //入参p相当于上图的节点X,对X进行左旋
    //r相当于上图节点Y
    if (p != null && (r = p.right) != null) {
        //第一步X1:若是Y左子树不为空,获取Y的左子树节点B,赋值给X的右子树
        if ((rl = p.right = r.left) != null)
            rl.parent = p; //设置Y左子树B的父节点是X
        //第二步X2: 将X的父节点ROOT赋值给Y的父节点
        if ((pp = r.parent = p.parent) == null)
        //若是X没有父节点,设置Y成父节点,并设置其颜色黑色(树根一定是黑色)
            (root = r).red = false;
        else if (pp.left == p)  //若是X是父节点ROOT的左子树
            pp.left = r;  //那么把父节点ROOT的左子树设置成Y
        else
            pp.right = r;  //那么把父节点ROOT的右子树子树设置成Y
        r.left = p; //第三步X3: 将X赋值给Y的左子树
        p.parent = r; //设置X的父节点是Y
    }
    return root;
}

b. 右旋
针对节点Y的右旋,按照代码步骤在图中做出标注:先不考虑节点颜色,关注点在于节点的调整,没有提现出父节点指向的链

右旋节点图.png

static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                        TreeNode<K,V> p) {
     TreeNode<K,V> l, pp, lr;
     //P节点相当于上图的节点Y,针对Y进行右旋
     //如果节点Y不为空,左子树不为空,l相当于节点X
     if (p != null && (l = p.left) != null) {
         //Y1: 将节点X的右子树赋值给Y的左子树
         if ((lr = p.left = l.right) != null)
             lr.parent = p; //节点X的右子树的父节点为节点Y
         //Y2: 将节点Y的父节点赋值给节点X
         if ((pp = l.parent = p.parent) == null)
             (root = l).red = false;//若是Y无父节点,设置父节点为X颜色黑色
         else if (pp.right == p)//Y节点为ROOT的右子树
             pp.right = l;//赋值节点X为ROOT右子树
         else
             pp.left = l;//赋值节点X为ROOT左子树
         l.right = p; //Y3: 设置节点X的右子树为节点Y
         p.parent = l;//节点Y的父节点设置为X
     }
     return root;
 }

关于红黑树的节点操作,在TreeMap中更能提现出来,包括红黑树的左右旋转,为了满足红黑树条件而及进行的重新着色再次不做详解,改天心血来潮再做研究。

更多详细说明,可以参考:重温数据结构:深入理解红黑树

并发

  • 为什么说hashmap是线程不安全的?
    由HashMap的源代码中可以看到,内部并未涉及到并发相关的关键字synchronized,volatile,原子性类,并且自己编写多线程对同一个map对象实例进行操作旧可以看到结果。

  • 如何保证Map的线程安全有那些实现?有什么区别?
    可以通过Collections.synchronizedMap方法来保证一个map的线程安全性。该方法内部是创建一个SynchronizedMap类,通过synchronized机制在每个方法内通过一个公共对象进行加锁,会造成map对象级别的阻塞。

ConcurrentHashMap底层还是基于HashMap的,锁机制也是synchronized来实现,只是颗粒级别不同,ConcurrentHashMap是分段锁,针对每个桶进行加锁,当多个线程可以同时访问操作同一个map上的不同桶节点。实现读操作的完全并行,写操作一定程度上的并行(不同的线程写入不同的桶数据)。并且,与SynchronizedMap不同,针对多线程一个读,一个写同一个map对象时候,ConcurrentHashMap不会抛出java.util.ConcurrentModificationException异常。

常见问题(参考网络)

  1. HashMap原理,内部数据结构?
    底层使用哈希表(数组+链表),当链表过长的时候,会转换成红黑树实现O(logn)时间复杂度查找。

2.讲一下HashMap中put方法过程?
a. 对key求hash值,然后再计算索引下标
b. 如果没有碰撞,直接放入桶中
c. 如果有碰撞,以链表方式连接到尾部
d. 如果链表长度超过阀值(TREEIFY_THRESHOLD=8 && capicity > 64),就把链表转成红黑树
e. 如果节点已经存在就替换原值
f. 如果桶满了(capicityx负载因子),就需要resize扩容

  1. HashMap中hash函数是如何实现的?还有那些hash实现方式?
    a. 将key的hashcode值高16位与hashcode值低16位进行异或操作
    b. 通过(n-1) & hash 得到桶索引值

  2. HashMap怎样解决冲突,讲一下扩容过程,加入一个值在原数组中,现在移动到新数组,位置是如何改变的?
    a. 将新节点加到链表尾部
    b. 容量扩充为原来的2倍,然后对每个节点重新重新计算哈希值。
    c. 原节点保持原索引位置不变或者移动到新数组索引[原索引+原容量]位置处。

  3. 抛开HashMap,hash冲突有那些解决办法?
    a. 开放定址法:放弃冲突位置,寻找新位置插入,所有元素都存放在hash表中。也就是说,散列表中的每一个位置要么有元素,要么没元素。参考:散列表之开放定址法
    b. 链地址法(链接法): 当通过哈希函数处理发现元素都映射到同一个位置,则可以将新节点链接到之前存在节点后,形成链表,就是链接法。参考:散列表之链接法

  4. 针对hashmap中某个Entry链太长,查找的时间复杂度可能达到O(n),如何优化?
    将链表转换成红黑树,JDK8中已经实现。

参考:

重温数据结构:深入理解红黑树

Java 8系列之重新认识HashMap

研究jdk关于TreeMap 红黑树算法实现

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352