fullOuterJoin
官方文档描述:
Perform a full outer join of `this` and `other`. For each element (k, v) in `this`,
the resulting RDD will either contain all pairs (k, (Some(v), Some(w))) for w in `other`,
or the pair (k, (Some(v), None)) if no elements in `other` have key k. Similarly,
for each element (k, w) in `other`, the resulting RDD will either contain all pairs (k, (Some(v), Some(w)))
for v in `this`, or the pair (k, (None, Some(w))) if no elements in `this` have key k.
Uses the given Partitioner to partition the output RDD.
函数原型:
def fullOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (Optional[V], Optional[W])]
def fullOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int)
: JavaPairRDD[K, (Optional[V], Optional[W])]
def fullOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner)
: JavaPairRDD[K, (Optional[V], Optional[W])]
源码分析:
def fullOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Option[V], Option[W]))] = self.withScope {
this.cogroup(other, partitioner).flatMapValues {
case (vs, Seq()) => vs.iterator.map(v => (Some(v), None))
case (Seq(), ws) => ws.iterator.map(w => (None, Some(w)))
case (vs, ws) => for (v <- vs.iterator; w <- ws.iterator) yield (Some(v), Some(w))
}
}
**
从源码中可以看出,fullOuterJoin() 与 join() 类似,首先进行 cogroup(), 得到 <K, (Iterable[V1], Iterable[V2])> 类型的 MappedValuesRDD,然后对 Iterable[V1] 和 Iterable[V2] 做笛卡尔集,注意在V1,V2中添加了None,并将集合 flat() 化。
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
final Random random = new Random();
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
JavaPairRDD<Integer,Integer> javaPairRDD = javaRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(Integer integer) throws Exception {
return new Tuple2<Integer, Integer>(integer,random.nextInt(10));
}
});
//全关联
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Optional<Integer>>> fullJoinRDD = javaPairRDD.fullOuterJoin(javaPairRDD);
System.out.println(fullJoinRDD);
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Optional<Integer>>> fullJoinRDD1 = javaPairRDD.fullOuterJoin(javaPairRDD,2);
System.out.println(fullJoinRDD1);
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Optional<Integer>>> fullJoinRDD2 = javaPairRDD.fullOuterJoin(javaPairRDD, new Partitioner() {
@Override
public int numPartitions() { return 2; }
@Override
public int getPartition(Object key) { return (key.toString()).hashCode()%numPartitions(); }
});
System.out.println(fullJoinRDD2);
leftOuterJoin
官方文档描述:
Perform a left outer join of `this` and `other`. For each element (k, v) in `this`,
the resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`,
or the pair (k, (v, None)) if no elements in `other` have key k.
Uses the given Partitioner to partition the output RDD.
函数原型:
def leftOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (V, Optional[W])]
def leftOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int)
: JavaPairRDD[K, (V, Optional[W])]
def leftOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner): JavaPairRDD[K, (V, Optional[W])]
源码分析:
def leftOuterJoin[W]( other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = self.withScope {
this.cogroup(other, partitioner).flatMapValues { pair =>
if (pair._2.isEmpty) {
pair._1.iterator.map(v => (v, None))
} else {
for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, Some(w))
}
}
}
**
从源码中可以看出,leftOuterJoin() 与 fullOuterJoin() 类似,首先进行 cogroup(), 得到 <K, (Iterable[V1], Iterable[V2])> 类型的 MappedValuesRDD,然后对 Iterable[V1] 和 Iterable[V2] 做笛卡尔集,注意在V1中添加了None,并将集合 flat() 化。
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
final Random random = new Random();
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
JavaPairRDD<Integer,Integer> javaPairRDD = javaRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(Integer integer) throws Exception {
return new Tuple2<Integer, Integer>(integer,random.nextInt(10));
}
});
//左关联 JavaPairRDD<Integer,Tuple2<Integer,Optional<Integer>>> leftJoinRDD = javaPairRDD.leftOuterJoin(javaPairRDD);
System.out.println(leftJoinRDD);
JavaPairRDD<Integer,Tuple2<Integer,Optional<Integer>>> leftJoinRDD1 = javaPairRDD.leftOuterJoin(javaPairRDD,2);
System.out.println(leftJoinRDD1);
JavaPairRDD<Integer,Tuple2<Integer,Optional<Integer>>> leftJoinRDD2 = javaPairRDD.leftOuterJoin(javaPairRDD, new Partitioner() {
@Override
public int numPartitions() { return 2; }
@Override
public int getPartition(Object key) { return (key.toString()).hashCode()%numPartitions();
}
});
System.out.println(leftJoinRDD2);
rightOuterJoin
官方文档描述:
Perform a right outer join of `this` and `other`. For each element (k, w) in `other`,
the resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`,
or the pair (k, (None, w)) if no elements in `this` have key k.
Uses the given Partitioner to partition the output RDD.
函数原型:
def rightOuterJoin[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (Optional[V], W)]
def rightOuterJoin[W](other: JavaPairRDD[K, W], numPartitions: Int)
: JavaPairRDD[K, (Optional[V], W)]
def rightOuterJoin[W](other: JavaPairRDD[K, W], partitioner: Partitioner): JavaPairRDD[K, (Optional[V], W)]
源码分析:
def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Option[V], W))] = self.withScope {
this.cogroup(other, partitioner).flatMapValues { pair =>
if (pair._1.isEmpty) {
pair._2.iterator.map(w => (None, w))
} else {
for (v <- pair._1.iterator; w <- pair._2.iterator) yield (Some(v), w)
}
}
}
**
从源码中可以看出,rightOuterJoin() 与 fullOuterJoin() 类似,首先进行 cogroup(), 得到 <K, (Iterable[V1], Iterable[V2])> 类型的 MappedValuesRDD,然后对 Iterable[V1] 和 Iterable[V2] 做笛卡尔集,注意在V2中添加了None,并将集合 flat() 化。
**
实例:
List<Integer> data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
final Random random = new Random();
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data);
JavaPairRDD<Integer,Integer> javaPairRDD = javaRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(Integer integer) throws Exception {
return new Tuple2<Integer, Integer>(integer,random.nextInt(10));
}
});
//右关联
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Integer>> rightJoinRDD = javaPairRDD.rightOuterJoin(javaPairRDD);
System.out.println(rightJoinRDD);
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Integer>> rightJoinRDD1 = javaPairRDD.rightOuterJoin(javaPairRDD,2);
System.out.println(rightJoinRDD1);
JavaPairRDD<Integer,Tuple2<Optional<Integer>,Integer>> rightJoinRDD2 = javaPairRDD.rightOuterJoin(javaPairRDD, new Partitioner() {
@Override
public int numPartitions() { return 2; }
@Override
public int getPartition(Object key) { return (key.toString()).hashCode()%numPartitions(); }
});
System.out.println(rightJoinRDD2);