广义相对论
该方程式由20世纪最伟大的物理学家爱因斯坦于1915年提出,是开创性理论——广义相对论的组成部分。它颠覆了科学家们此前对于引力的定义,将其描述为时空扭曲的结果。
标准模型
这是另外一条被物理学界奉为经典条文的方程式。标准方程描述了那些被认为组成了当前宇宙的基本粒子。它还能够被压缩为以18世纪法国著名数学和天文学家约瑟夫‧路易斯‧拉格朗日命名的简化形式。
微积分
如果说,广义相对论与标准方程描述的是宇宙的某些特殊方面,那么其他一些方式则适用于所有情况,比如微积分基本定理方程。
勾股定理
该定理可谓老而弥香的骨灰级理论,几乎是每个学生开始学习生涯后,学到的第一批几何知识之一。
1 = 0.9999999999....
从形式上看,这是一个很简单的等式。1等于0.99999……这个无穷数。之所以推荐这个等式,美国康奈尔大学数学家斯蒂文‧斯特罗盖茨的理由是 “每个人都能理解它,但同时人们又会觉得有些不甘心,不太愿意相信这种“简单”意味着“正确”。在他看来,这个等式展现了一种优雅的平衡感——1代表着数学的起始点,而右边的无穷数则寓意无限的神秘。
狭义相对论
爱因斯坦再次因为自己的相对论入选,只不过这次是狭义而不是广义相对论。
狭义相对论并没有把时间和空间看做绝对、静止的概念,它们呈现的状态与观察者的速度有关。这个方程式描述了随着观察者向某一方向移动的速度加快,时间是如何膨胀,或者说开始变慢。
欧拉方程
这个看起来非常简单的方程式,实质上描述了球体的本质。用马萨诸塞州威廉姆斯学院的数学家科林‧亚当斯的话说:“如果你能够将一个球体分割成为面(F)、边(F)和点(V),那么这些面,边和顶点之间的关系,必定符合V-E+F=2。”
欧拉-拉格朗日方程和诺特定理
美国纽约大学的克莱默表示:“这个方程看起来有些抽象,但却拥有惊人的力量。它最酷的一点在于,这条定理经受了物理学领域的历次重大变革而延续下来,如量子力学的出现以及相对论的引进。”克莱默表示:“这个方程所告诉你的便是这一物理系统是如何随着时间而演化的。”
卡伦‧西曼吉克方程
美国罗格斯大学理论物理学家马特·斯特拉斯(Matt Strassler)指出:“Callan-Symanzik方程自从1970年以来便一直是最重要的方程式之一。”这个方程有着很多应用领域,比如它允许物理学家估算质子和中子的质量和大小,这两者是构成原子核的组成部分。
极小曲面方程
威廉姆斯学院数学家弗兰克·摩根(Frank Morgan)表示:“美丽的肥皂泡背后隐藏着秘密。这个方程是非线性的,其中包含有指数和微积分成分,描述了肥皂泡行为背后的数学。这个我们相对熟悉的线性偏微分方程不同,如热方程、波动方程以及量子力学中的薛定谔方程等等。”
欧拉线
格林·惠特尼(Glen Whitney)是纽约数学博物馆的创办人,他推荐的是以18世纪瑞士大数学家欧拉命名的“欧拉线”。惠特尼解释道:“从一个任意三角形开始,画出包含这个三角形的最小的圆,找到这个圆的中心;然后找出这个三角形的重心,过三角形的三条边分别作垂线,找出三条线的相交点,这样我们便得到三个点,而这一定理就是说,以上找出的三个点都位于一条直线上(即三角形的外心、重心和垂心共线),这条直线就被称作这个三角形的欧拉线。”