TensorFlow使用手册

基本介绍

图的介绍

图是数据结构和算法学里最强大的框架之一, 可以用来表示所有类型的结构和系统.

  • 顶点/节点
  • 边(edge): 顶点之间的线段就是边,表示事物之间的关系. 比如社交网络的关注粉丝关系.
  • 有向图和无向图: 区别就是有向图中的边的关系是有方向的.
  • 环图和无环图: 关系的传递

Computation Graph : 是边(data)和节点(operation)组成的有向数据流图

  • 边代表数据的流向, 也可是说的data的传递
  • 节点代表对数据的操作和计算, 对数据的操作

Graph常规操作

    1. 默认图中创建操作/函数
import tensorflow as tf

c = tf.constant(1.0)
a = 1.0

print(c)
print(a)
print(c.graph)
print(tf.get_default_graph)
print(c.name)

#输出结果
Tensor("Const:0", shape=(), dtype=float32)
1.0
<tensorflow.python.framework.ops.Graph object at 0x0000022D5F630BE0>
<function get_default_graph at 0x0000022D70A6DBF8>
Const:0
    1. 在不通的图里创建函数
#上下文管理器选择图
g = tf.Graph()
print('g:', g)
with g.as_default():
    d = tf.constant(1.0)
    print(d.graph)

#运行结果:
g: <tensorflow.python.framework.ops.Graph object at 0x000002413EB3BC50>
<tensorflow.python.framework.ops.Graph object at 0x000002413EB3BC50>
    1. 为图分配不同的运行设备
g2 = tf.Graph()
with g2.device('/gpu:0'):
    a = tf.constant(1.5)
  • namescope, 能是神经网络的节点标签清晰
with tf.name_scope('A'):
    a1 = tf.Variable([1], name='a1')
    with tf.name_scope('B'):
        a2 = tf.Variable([1], name='a2')
with tf.name_scope('A'):
    a3 = tf.Variable([1], name='a3')
print(a1)
print(a2.name)
print(a3)

# 运行结果
<tf.Variable 'A/a1:0' shape=(1,) dtype=int32_ref>
A/B/a2:0
<tf.Variable 'A_1/a3:0' shape=(1,) dtype=int32_ref>
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355

推荐阅读更多精彩内容