场景
以下是数据模型及关注的部分:
用Power BI显示不同产品类别按时间的销售利润率如下:
度量值
订单累计利润率 % = DIVIDE( SUM( 'tb订单'[利润] ) , SUM( 'tb订单'[销售额] ))
可视化
设置如下:
效果:
问题
问题来了,虽然知道不同类别按照时间的订单累计利润率,但从业务上来看,有没有参考呢?每月的整体利润率呢?可以加入到该图中吗?
很遗憾,Power BI并不直接支持这种想法,那我们需要变相来实现,利用技巧,曲线救国。
想要的效果:
这里有一条汇总线作为整体参考,就像是股票的大盘,如果个股好于大盘,则个股表现良好,否则就是脱了后腿。
实现
既然默认情况下无法满足需要,那就来自行构建需要的效果。
问题抽象
为了在图例中加入汇总,也就是在类别的同一级别增加一个类目叫“汇总”。并实现如下逻辑:
- 如果是普通分类,就按原度量值(利润率)计算;
- 如果是选择汇总,就计算度量值(利润率)的全局表现。
注意,这里并没有提及业务,并把利润率的业务语义放入括号,这种抽象描述便于总结出套路。
第一步:构造新的分类
新的分类应该满足:
- 包括原有分类;
- 增加一个总计项;
- 新的分类应该能用来进行筛选(切片)。
新建一个计算表:
类别带汇总 =
VAR base = VALUES( 'tb产品'[类别] )
VAR base_add_total = UNION( base , ROW( "类别" , "汇总" ) )
RETURN base_add_total
结果:
为了能够进行筛选和切片,与原有分类建立联系:
第二步:构造新的度量值
为了实现逻辑:
- 如果是普通分类,就按原度量值(利润率)计算;
- 如果是选择汇总,就计算度量值(利润率)的全局表现。
建立新的度量值:
订单累计利润率(含汇总) % =
IF(
SELECTEDVALUE( '类别带汇总'[类别] ) = "汇总" ,
CALCULATE( DIVIDE( SUM( 'tb订单'[利润] ) , SUM( 'tb订单'[销售额] ) ) , ALL( 'tb产品' ) ) ,
[订单累计利润率 %]
)
在该度量值中,如果是“汇总”,那就计算全局性的度量值,这里必须注意忽略产品分类表的影响,所以使用ALL来处理。
第三步:构建可视化
有了我们需要的X轴:日期,Y轴:度量值,图例:类别(含汇总)就可以构建出:
优化
优化是对问题解决方案的进一步完善,很多问题是没有完美解决方案的,例如本例中的模型:
这个关系的建立显得特别生硬,而且除了在这里使用这个技巧外,这个辅助表也别无他用,在Power BI / DAX数据模型中应该减少主体模型本身的表,在这里可以不使用关系。
让这个辅助表在模型外部,显得模型更加紧凑。由于没有了关系,可视化无法完成正常的筛选效果,如下:
所有的类别图例线合成在一起,原因请大家自己思考。(提示:新类别失去关系,无法筛选)
可以在度量值中,来构建虚拟关系(高级技巧),修改度量值如下:
订单累计利润率(带汇总) % =
VAR f = TREATAS( VALUES( '类别带汇总'[类别] ) , 'tb产品'[类别] )
RETURN
IF(
SELECTEDVALUE( '类别带汇总'[类别] ) = "汇总" , CALCULATE( DIVIDE( SUM( 'tb订单'[利润] ) , SUM( 'tb订单'[销售额] ) ) , ALL( 'tb产品' ) ) ,
CALCULATE( [订单累计利润率 %] , f )
)
效果如下:
说明:
- 由TREATAS模拟虚拟关系的创建
- CALCULATE( [订单累计利润率 %] , f ) 完成原有的计算
TREATAS是怎么回事
关于 TREATAS 的解释涉及到很多细节,暂不展开。但这个函数的功能正如它的名字一样,如此好记好用。这个窍门就在于记住:TREATAS,意思是TREAT AS,意思是【对待 参数1 作为 参数2】。那么:
TREATAS( VALUES( '类别带汇总'[类别] ) , 'tb产品'[类别] )
就是:对待 '类别带汇总'[类别] 作为 'tb产品'[类别] 来用,结果确实起到了类别的筛选作用。
总结
关于业务面
在很多商业场景中来对比按时间趋势的各类项目的比率,有个整体作为参考是很有价值的。正如:整体是大盘,分项是各股。那么业务线、部门、品牌、种类的贡献度价值就一目了然了。
关于技术面
另外,在Power BI / DAX数据建模中,没有完美的方案,但通常都有可以优化的方案,本例便是用TREATAS来完成此点,该套路还适用于更多场景。如果敢想极端情况,一个N个表的模型,甚至可以不要关系,全用TREATAS来实现虚拟关系。这无疑在提醒我们可以将模型更灵活地进行设计。