记录完整spark.hive.sql处理过程

需求:

从App启动日志中读取所需数据,用来得到用户的常用启动时间点,常活动的地理位置,并更新到用户画像表中。

背景:

device_id 设备id
start_time App启动时间
latitude 上传纬度
longitude 上传精度

实现

原始数据

DataFrame数据形式是结构化数据,如下

    device_id                                   start_time                  latitude                longitude

0   ad3bb7b86f9ad9ff4786f767094f31f4835cf167    2017-07-26 00:18:55.985     39.69992988280924       116.5083292779666
1   7e98a8401070c6bcb46a9ef32efd0e6a7066a220    2017-07-26 00:04:37.532     39.82559758010746       116.4472136767569
2   865675021801835                             2017-07-26 00:19:28.821     0.000000                0.000000

通过
schemeRdd.rdd变成普通rdd

结构变为
[(device_id,start_time,latitude,longitude),(device_id,start_time,latitude,longitude),...]
1. 经纬度处理成geohash6 合并到一起生成的RDD数据结构

    rdd.map(lambda x: (x['device_id'], x['start_time'],geohash.encode(x[lat],x[lng]))   

    得到数据结构是:
    [('device_id',start_time,geohash6)), (('device_id',start_time,geohash6))]
 
2. 拆分开成2个rdd ,分别是时间和GeoHash的,分别处理

    timerdd = rdd.map(lambda x: (x[0],x[1]))
    timerdd_group=timerdd.groupByKey()
    得到数据结构
    [('device_id1',['2017-09-01 12:34:00','2017-06-30 01:01:12']),('device_id2',['2017-09-05 11:15:32','2017-07-30 07:01:08'])]

    geohashrdd=rdd.map(lambda x: (x[0],x[2]))
    geohashrdd_group=geohashrdd.groupByKey()
    得到数据结构
    [('device_id1',['EXXEQ6','OKWQE9','SDEDD1','SDQGW2']),('device_id2',['LLSJW0','YWQDX7'])]
    2.1 得到用0-24来表示的常使用的时间点 , 得到最近使用时间到日期  (注意时间list也许没数据,则设置默认时间)
        result_time_rdd= timerdd_group.mapValues(lambda x: use_time(x))     #该函数生成一个元祖 ('often_use_time','last_use_time')

        得到结构为
        [('device_id1',(12,'2017-09-01')),('device_id2',(9,'2017-06-05')),('device_id3',(0,'1970-01-01'))]
    2.2 得到最常去的2个geohash的值
        result_geohash_rdd = geohashrdd_group.mapValues(lambda x: activie_geohash(x) )

        得到结构为
        [('device_id1',('EWEQ1','SDWQ3'),('device_id2',('UYWIE8','']),('device_id3',['','']]

  1. 根据结果数据结构,组拼更新SQL,更新数据
    结果2个rdd

    result_time_rdd    =  [('device_id1',(12,'2017-09-01')),('device_id2',(9,'2017-06-05')),('device_id3',(0,'1970-01-01'))]

    result_geohash_rdd =  [('device_id1',('EWEQ1','SDWQ3'),('device_id2',('UYWIE8','']),('device_id3',['','']]

    通过cogroup作得到

    [('device_id1',([12,'2017-09-01'],['EWEQ1','SDWQ3']),('device_id2',['UYWIE8','POKE5']),('device_id3',['MVBD5','ZCXV4']]

更新到表中


 UPDATE recommend.user_tag SET open_app_period=x[1],open_app_last=x[2],active_loc_1=x[3],active_loc_2=x[4] WHERE device_id=%s

结束语

全文使用RDD的API来实现,RDD的API十分强大
目前建议使用DataFrame来实现

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,193评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,306评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,130评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,110评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,118评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,085评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,007评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,844评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,283评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,508评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,395评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,985评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,630评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,797评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,653评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,553评论 2 352

推荐阅读更多精彩内容