memcached 分布式实现原理

摘要

在高并发环境下,大量的读、写请求涌向数据库,此时磁盘IO将成为瓶颈,从而导致过高的响应延迟,因此缓存应运而生。无论是单机缓存还是分布式缓存都有其适应场景和优缺点,当今存在的缓存产品也是数不胜数,最常见的有redis和memcached等,既然是分布式,那么他们是怎么实现分布式的呢?本文主要介绍分布式缓存服务mencached的分布式实现原理。

缓存本质

计算机体系缓存

什么是缓存,我们先看看计算机体系结构中的存储体系,根据冯·诺依曼计算机体系结构模型,计算机分为五大部分:运算器、控制器、存储器、输入设备、输出设备。结合现代计算机,CPU包含运算器和控制器两个部分,CPU负责计算,其需要的数据由存储提供,存储分为几个级别,就拿我当前的PC举个例子,我的机器存储清单如下:

1,356G的磁盘

2,4G的内存

3,3MB三级缓存

4,256KB二级缓存(pre core)

除了上述部分,还有CPU内的寄存器,当然有的计算机还有一级缓存等。CPU运算器工作的时候需要数据,数据哪里来?首先从距离CPU最近的二级缓存去拿,这块缓存速度最快,通常也是体积最小,因为价格最贵:

存储金字塔

如上图所示,存储体系就像个金子塔,最上层最快,价格最贵,最下层最慢,价格也最便宜,CPU的数据源优先级一层层从上到下去寻找数据。

很显然,除了最慢的那块存储,在计算机体系中,相对较快的那些存储都可以被称为缓存,他们解决的问题是让存储访问更快。

缓存应用系统

计算机体系存储系统模型扩展到应用也是一样,应用需要数据,数据哪里来?缓存(更快的存储)->DB(较慢的存储),他们的工作流程大致如下图所示:

带缓存的存储访问一般模型

如上图所示,缓存应用系统一般存储访问流程:首先访问缓存较快的存储介质,如果命中且未失效则返回内容,如果未命中或失效则访问较慢的存储介质将内容返回同时更新缓存。

memcached简介

什么是memcached

memcached是LiveJournal旗下的Danga Interactive公司的Brad Fitzpatric为首开发的一款软件。现在已经成为mixi、hatena、Facebook、Vox、LiveJournal等众多服务中提高Web应用扩展性的重要因素。传统的Web应用都将数据保存到RDBMS中,应用服务器从RDBMS中读取数据、处理数据并在浏览器中显示。但是随着数据量增大、访问的集中、就会出现RDBMS的负担加重、数据库响应变慢、导致整个系统响应延迟增加。

而memcached就是为了解决这个问题而出现的,memcached是一款高性能的分布式内存缓存服务器,一般目的是为了通过缓存数据库的查询命中减少数据库压力、提高应用响应速度、提高可扩展性。

memcached缓存特点

协议简单

1,基于libevent的事件处理

2,内置内存存储方式

3,memcached不相互通信的分布式

memcached分布式原理

今天的内容主要涉及memcached特点的第四条,memcached不相互通信,那么memcached是如何实现分布式的呢?memcached的分布式实现主要依赖客户端的实现:

memcached分布式

如上图所示,我们看下缓存的存储的一般流程:

当数据到达客户端,客户端实现的算法就会根据“键”来决定保存的memcached服务器,服务器选定后,命令他保存数据。取的时候也一样,客户端根据“键”选择服务器,使用保存时候的相同算法就能保证选中和存的时候相同的服务器。

余数计算分散法

余数计算分散法是memcached标准的memcached分布式方法,算法如下:

CRC($key)%N

该算法下,客户端首先根据key来计算CRC,然后结果对服务器数进行取模得到memcached服务器节点,对于这种方式有两个问题值得说明一下:

当选择到的服务器无法连接的时候,一种解决办法是将尝试的连接次数加到key后面,然后重新进行hash,这种做法也叫rehash。

第二个问题也是这种方法的致命的缺点,尽管余数计算分散发相当简单,数据分散也很优秀,当添加或者移除服务器的时候,缓存重组的代价相当大。

Consistent Hashing算法

Consistent Hashing算法描述如下:首先求出memcached服务器节点的哈希值,并将其分配到0~2^32的圆上,这个圆我们可以把它叫做值域,然后用同样的方法求出存储数据键的哈希值,并映射到圆上。然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上,如果超过0~2^32仍找不到,就会保存在第一台memcached服务器上:

memcached基本原理

再抛出上面的问题,如果新添加或移除一台机器,在consistent Hashing算法下会有什么影响。上图中假设有四个节点,我们再添加一个节点叫node5:

添加了node节点之后

node5被放在了node4与node2之间,本来映射到node2和node4之间的区域都会找到node4,当有node5的时候,node5和node4之间的还是找到node4,而node5和node2之间的此时会找到node5,因此当添加一台服务器的时候受影响的仅仅是node5和node2区间。

优化的Consistent Hashing算法

上面可以看出使用consistent Hashing最大限度的抑制了键的重新分配,且有的consistent Hashing的实现方式还采用了虚拟节点的思想。问题起源于使用一般hash函数的话,服务器的映射地点的分布非常不均匀,从而导致数据库访问倾斜,大量的key被映射到同一台服务器上。为了避免这个问题,引入了虚拟节点的机制,为每台服务器计算出多个hash值,每个值对应环上的一个节点位置,这种节点叫虚拟节点。而key的映射方式不变,就是多了层从虚拟节点再映射到物理机的过程。这种优化下尽管物理机很少的情况下,只要虚拟节点足够多,也能够使用得key分布的相对均匀。

总结

本文介在理解缓存基本概念的情况下介绍了memcached的分布式算法实现原理,memcached的分布式是由客户端函数库实现的。

欢迎学Java和大数据的朋友们加入java架构交流:736925717 

加群链接:https://jq.qq.com/?_wv=1027&k=5XXrrMk

群内提供免费的架构资料还有:Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点高级进阶干货的免费直播讲解  可以进来一起学习交流哦

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容