名片识别,史上最简单的集成攻略来啦!附有SDK包

前言

现如今,人际交往成为生活中必不可少的一部分,之间互相传递名片,记录联系信息,是必要的一步,名片承担着对方的各种信息,姓名、公司、地址等等,一般情况下,我们会比对着录入名片上的各种信息,一个个地敲击手机键盘。如果有了名片识别,就可以扭转这种现象,轻松完成名片识别,录入名片信息。

名片识别技术介绍

名片识别采用OCR技术,将名片上的文字转化识别为可进行编辑处理的相应文字,并可对识别后的名片信息进行分类管理。它支持通过拍照识别、二维码识别、导入识别方式对名片信息进行采集,用户只需将名片放在手机拍摄的预览框内,便可自动完成对名片识别的一系列操作,非常方便。



开发前准备步骤

在开始API开发工作之前,您需要完成必要的开发准备工作,同时请确保您的工程中已经配置HMS Core SDK的Maven仓地址,并且完成了本服务的SDK集成。

android studio 安装

很简单,下载安装即可。具体下载链接:

Android studio 官网下载链接:https://developer.android.com/studio
Android studio安装流程参考链接:https://www.cnblogs.com/xiadewang/p/7820377.html

在项目级gradle里添加华为maven仓

打开AndroidStudio项目级build.gradle文件
maven地址

在buildscript->repositories里面配置HMS SDK的maven仓地址

buildscript {
    repositories {
        maven { url 'https://developer.huawei.com/repo/' }
        
    }
}

在allprojects ->repositories里面配置HMS SDK的maven仓地址

allprojects {
    repositories {
        maven { url 'https://developer.huawei.com/repo/' }
        
    }
}

引入SDK
dependencies {
    // Text recognition SDK.
    implementation 'com.huawei.hms:ml-computer-vision-ocr:2.0.1.300'
    // Text recognition model.
    implementation 'com.huawei.hms:ml-computer-vision-ocr-cn-model:2.0.1.300'
    implementation 'com.huawei.hms:ml-computer-vision-ocr-jk-model:2.0.1.300'
    implementation 'com.huawei.hms:ml-computer-vision-ocr-latin-model:2.0.1.300'
}
清单文件
<manifest
    ...
    <meta-data
        android:name="com.huawei.hms.ml.DEPENDENCY"
        android:value="ocr" />
    ...
</manifest>
权限
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.hardware.camera.autofocus" />
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.autofocus" />
动态权限申请
if (!(ActivityCompat.checkSelfPermission(this, Manifest.permission.CAMERA) == PackageManager.PERMISSION_GRANTED)) {
    requestCameraPermission();
}

开发重点步骤

1. 创建文本分析器MLTextAnalyzer用于识别图片中的文字,使用自定义参数MLLocalTextSetting配置端侧文本分析器。
MLLocalTextSetting setting = new MLLocalTextSetting.Factory()
        .setOCRMode(MLLocalTextSetting.OCR_DETECT_MODE)
        .setLanguage("zh")
        .create();
MLTextAnalyzer analyzer = MLAnalyzerFactory.getInstance()
        .getLocalTextAnalyzer(setting);

2. 通过android.graphics.Bitmap创建MLFrame,支持的图片格式包括:jpg/jpeg/png/bmp,建议输入图片长宽比范围:1:2到2:1。
MLFrame frame = MLFrame.fromBitmap(bitmap);
3. 将生成的MLFrame对象传递给“asyncAnalyseFrame”方法进行文字识别。
Task<MLText> task = analyzer.asyncAnalyseFrame(frame);
task.addOnSuccessListener(new OnSuccessListener<MLText>() {
    @Override
    public void onSuccess(MLText text) {
        // Recognition success.
        
    }
}).addOnFailureListener(new OnFailureListener() {
    @Override
    public void onFailure(Exception e) {
        // Recognition failure.
        
    }
});
4. 识别完成,停止分析器,释放识别资源。
try {
    if (analyzer != null) {
        analyzer.stop();
    }
} catch (IOException e) {
    // IOException
} catch (Exception e) {
    // Exception
}

Demo效果

为了便于开发者更好的理解此场景,我们也做了一个demo app,展示名片识别的功能效果

名片识别演示demo

如果你对实现方式感兴趣,可以在Github上下载源码:https://developer.huawei.com/consumer/cn/doc/HMSCore-Guides-V5/text-recognition-0000001050040053-V5#ZH-CN_TOPIC_0000001050750207__section16220018134717

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352