# Redis 简介
# 什么是 Redis
Redis 是用 C 语言开发的一个开源的高性能键值对(key-value)数据库。它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止 Redis 支持的键值数据类型如下:
- 字符串类型
- 散列类型
- 列表类型
- 集合类型
- 有序集合类型
string (字符串)
字符串 string 是 Redis 最简单的数据结构。Redis 所有的数据结构都是以唯一的 key 字符串作为名称,然后通过这个唯一 key 值来获取相应的 value 数据。不同类型的数据结构的差异就在于 value 的结构不一样。字符串结构使用非常广泛,一个常见的用途就是缓存用户信息。我们将用户信息结构体使用 JSON 序列化成字符串,然后将序列化后的字符串塞进 Redis 来缓存。同样,取用户信息会经过一次反序列化的过程
批量键值对:可以批量对多个字符串进行读写,节省网络耗时开销
原子计数:如果 value 值是一个整数,还可以对它进行自增操作。自增是有范围的,它的范围是 signed long 的最大最小值,超过了这个值,Redis 会报错
list (列表)
Redis 的列表相当于 Java 语言里面的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1),但是索引定位很慢,时间复杂度为 O(n),这点让人非常意外。 当列表弹出了最后一个元素之后,该数据结构自动被删除,内存被回收
Redis 的列表结构常用来做异步队列使用。将需要延后处理的任务结构体序列化成字符串塞进 Redis 的列表,另一个线程从这个列表中轮询数据进行处理
右边进左边出:队列
右边进右边出:栈
hash (字典)
Redis 的字典相当于 Java 语言里面的 HashMap,它是无序字典。内部实现结构上同 Java 的 HashMap 也是一致的,同样的数组 + 链表二维结构。第一维 hash 的数组位置碰撞时,就会将碰撞的元素使用链表串接起来
hash 结构也可以用来存储用户信息,不同于字符串一次性需要全部序列化整个对象,hash 可以对 用户结构中的每个字段单独存储。这样当我们需要获取用户信息时可以进行部分获取。而以整个字符串的形式去保存用户信息的话就只能一次性全部读取,这样就会比较浪费网络流量。 hash 也有缺点,hash 结构的存储消耗要高于单个字符串,到底该使用 hash 还是字符串,需要根据实际情况再三权衡
set (集合)
Redis 的集合相当于 Java 语言里面的 HashSet,它内部的键值对是无序的唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值NULL。 当集合中最后一个元素移除之后,数据结构自动删除,内存被回收
zset (有序集合)
zset 似于 Java 的 SortedSet 和 HashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以给每个 value 赋予一个 score,代表这个 value 的排序权重
zset 可以用来存粉丝列表,value 值是粉丝的用户 ID,score 是关注时间。我们可以对粉丝列表按关注时间进行排序
zset 还可以用来存储学生的成绩,value 值是学生的 ID,score 是他的考试成绩。我们可以对成绩按分数进行排序就可以得到他的名次
# Redis 的应用场景
- 缓存(数据查询、短连接、新闻内容、商品内容等等)
- 分布式集群架构中的 session 分离
- 聊天室的在线好友列表
- 任务队列(秒杀、抢购、12306 等等)
- 应用排行榜
- 网站访问统计
- 数据过期处理(可以精确到毫秒)
# 持久化
RDB快照(snapshot)
- 在默认情况下, Redis 将内存数据库快照保存在名字为 dump.rdb 的二进制文件中。
你可以对 Redis 进行设置, 让它在“ N 秒内数据集至少有 M 个改动”这一条件被满足时, 自动保存一次数据集。
比如说, 以下设置会让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”这一条件时, 自动保存一次数据集:
save 60 1000
AOF(append-only file)
- 快照功能并不是非常耐久(durable): 如果 Redis 因为某些原因而造成故障停机, 那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。从 1.1 版本开始, Redis 增加了一种完全耐久的持久化方式: AOF 持久化,将修改的每一条指令记录进文件
你可以通过修改配置文件来打开 AOF 功能:
(# appendonly yes)
从现在开始, 每当 Redis 执行一个改变数据集的命令时(比如 SET), 这个命令就会被追加到 AOF 文件的末尾。
这样的话, 当 Redis 重新启时, 程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。
你可以配置 Redis 多久才将数据 fsync 到磁盘一次。
有三个选项:
1 每次有新命令追加到 AOF 文件时就执行一次 fsync:非常慢,也非常安全。
2 每秒 fsync 一次:足够快(和使用 RDB 持久化差不多),并且在故障时只会丢失 1 秒钟的数据。
3 从不 fsync:将数据交给操作系统来处理。更快,也更不安全的选择。
推荐(并且也是默认)的措施为每秒 fsync 一次, 这种 fsync 策略可以兼顾速度和安全性。
RDB 和 AOF ,我应该用哪一个?
- 如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失, 那么你可以只使用 RDB 持久化。
有很多用户都只使用 AOF 持久化, 但我们并不推荐这种方式: 因为定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。
Redis 4.0 混合持久化
重启 Redis 时,我们很少使用 rdb 来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 rdb 来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。 Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。AOF在重写(aof文件里可能有太多没用指令,所以aof会定期根据内存的最新数据生成aof文件)时将重写这一刻之前的内存rdb快照文件的内容和增量的 AOF修改内存数据的命令日志文件存在一起,都写入新的aof文件,新的文件一开始不叫appendonly.aof,等到重写完新的AOF文件才会进行改名,原子的覆盖原有的AOF文件,完成新旧两个AOF文件的替换;
AOF根据配置规则在后台自动重写,也可以人为执行命令bgrewriteaof重写AOF。 于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。开启混合持久化:
aof-use-rdb-preamble yes
- 混合持久化aof文件结构
# 缓存淘汰策略
当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap)。交换会让 Redis 的性能急剧下降,对于访问量比较频繁的 Redis 来说,这样龟速的存取效率基本上等于不可用。
在生产环境中我们是不允许 Redis 出现交换行为的,为了限制最大使用内存,Redis 提供了配置参数 maxmemory 来限制内存超出期望大小。
当实际内存超出 maxmemory 时,Redis 提供了几种可选策略 (maxmemory-policy) 来让用户自己决定该如何腾出新的空间以继续提供读写服务。noeviction 不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。
volatile-lru 尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失。
volatile-ttl 跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl 越小越优先被淘汰。
volatile-random 跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。
allkeys-lru 区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。这意味着没有设置过期时间的 key 也会被淘汰。
allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。volatile-xxx 策略只会针对带过期时间的 key 进行淘汰,allkeys-xxx 策略会对所有的 key 进行淘汰。如果你只是拿 Redis 做缓存,那应该使用 allkeys-xxx,客户端写缓存时不必携带过期时间。如果你还想同时使用 Redis 的持久化功能,那就使用 volatile-xxx 策略,这样可以保留没有设置过期时间的 key,它们是永久的 key 不会被 LRU 算法淘汰。