Python数据分析指南

公众号:尤而小屋
作者:Peter
编辑:Peter

大家,我是Peter~

关注尤而小屋的朋友都知道,Peter一直都在写关于数据分析的文章。

有读者朋友后台反映:Peter能不能将公众号的文章进行分类,方便阅读呢?

于是Peter周日花了些时间认真整理了一下,尤而小屋里面的文章主要分为下面的7大块:

image

下面一一来介绍下:

一、Pandas库

首先必须隆重地向大家介绍Pandas库的相关文章。

Pandas是Python的强大数据分析库。目前Pandas相关的文章已经更新到第30篇,主要分为4大部分:

image

1、基础部分:介绍Pandas的入门知识

  • Pandas的简介
  • 如何理解和创建Series和DataFrame类型的数据
  • Pandas中的花样取数技巧
  • 如何进行数据探索和数据类型转换
  • Peter带你图解Pandas中的groupby、rank、sort_values、merge+concat+join+append、缺失值+空值+重复值处理、轴旋转stack+unstack

2、进阶部分:Pandas中的技巧性操作

  • Pandas中的透视表如何制作
  • Pandas的3个宝藏函数:map+apply+applymap
  • 移动函数shift的使用
  • assign函数的使用

3、Pandas挑战SQL系列:使用Pandas来实现SQL中的操作

  • SQL中的三种排名方式:Pandas的rank函数
  • 挑战groupby统计操作
  • 14种方式,34个案例:对比SQL,学习Pandas
  • Pandas实现SQL中的groupby_concat操作

4、时间序列问题:如何处理Python或Pandas中时间问题

目前主要是介绍了3个时间模块的使用:time、datetime、calendar,后续会继续更新

🌶Pandas专栏地址

二、Python入门

Python入门的学习资料也在同步更新,方便自己的查漏补缺,也为了给读者提供优质的学习资料。将来的主要方向:

image

目前完成了:

  • Python数据类型的文章,涉及到:字符串、列表、集合、字典
  • Python语句操作:深入理解Python中的变量与赋值,for语句和if语句

在Python入门的部分除了上面的4大板块,后续会引入一个新的板块:《Python自动化办公系列

🌶Python入门

三、可视化教程

可视化教程是尤而小屋更新的另一个重点(小屋核心教程:Pandas+可视化)。目前涉及到的可视化库包含:

image

(1)关于plotly和高级封装plotly_express

Plotly库一直以来都是可视化教程中的主要方向,目前更新完成了各类基本图形的绘制:柱状图、散点图、气泡图、K线图、桑基图、矩形树状图等,最近还写了一篇如何处理Plotly中的图例Legend问题。

后续Plotly的文章重点将会放在进阶部分:Plotly和Dash的结合,这才是Plotly真正强大的地方。

Dash官网学习地址:https://dash.plotly.com/installation

(2)关于Tableau

Tableau是一个商业级的可视化软件,深受大厂的青睐,能够通过各种拖拽实现精美的图表。如果不希望通过代码来实现图形绘制,Tableau值得大家认真学习,它还有属于自己的比赛。

(3)关于Pyecharts+pyg2plot

这两个可视化库都是国产的。Pyecharts是基于百度团队的Echarts,结合Python而形成的;pyg2plot是阿里的蚂蚁金服团队开发的。

Peter后续更新pyecharts的文章,请期待~

🌶Plotly专栏

四、MySQL/SQL

数据库MySQL的内容主要是3大块:

  • LeetCode-SQL的题解
  • 《MySQL经典50道面试题》
  • Pandas挑战SQL的实战

目前最为精华的内容是《MySQL经典50题》,已经全部完成,另外两部分会陆续更新。

image

🌶MySQL专栏

🌶LeetCode-SQL

五、爬虫系列

爬虫的文章每次都会是一个小的案例demo,它将会教你:

  • 爬取数据
  • 数据清洗
  • 数据分析
  • 可视化制图

整个流程全部走下来可以作为一个实战的案例分析,目前的文章包含:

image

🌶爬虫专栏

六、机器学习与算法

机器学习与算法的文章相对来说会比较,Peter自己也需要不断地学习提升,目前的文章:

  • 从理论到实战,拿下机器学习入门算法:KNN,K近邻
  • 理论+案例+数据,详解机器学习模型:线性回归
  • Python数据挖掘:多因子分析实战
  • 统计学知识扫盲:相关系数

后续的重点是:10大数据挖掘算法、scikit-learn库使用、统计学知识,尽量多写实战案例的文章

🌶专栏地址:机器学习

七、杂文

除去上面介绍的各种技术和实战类的文章,平时偶尔也会写或者转发Peter认为不错的文章:

  • Python环境配置保姆教程
  • 日常必备的Linux命令
  • Jupyter notebook的使用入门手册
  • Markdown的语法手册(PPT版本)

写在最后

写作真的是不易:从确定选题,收集、整理、查阅资料,写作成文,到最后的公众号的后期排版等,Peter都会尽全力做到最好,希望给自己和读者朋友一篇满意的文章。

后面Peter会写一篇文章:《Peter从头到尾教你写作公众号文章》

image

如果你觉得不错,想跟着Peter一起学习数据分析,欢迎点赞、留言、一起交流喔

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容