【区块链探索笔记八】:公钥、私钥与数字签名

公钥与私钥

区块链技术的应用和开发,数字加密技术是关键。一旦加密方法遭到破解,区块链的数据安全将受到挑战,区块链的不可篡改性将不复存在。加密算法分为对称加密算法和非对称加密算法,区块链中主要应用非对称加密算法。

非对称加密指为满足安全性需求和所有权验证需求而集成到区块链中的加密技术。非对称加密通常在加密和解密过程中使用两个非对称的密码,分别称为公钥和私钥。非对称密钥对具有两个特点:

一是用其中一个密钥加密信息后,只有另一个对应的密钥才能解开。

二是公钥可向其他人公开,私钥则保密,其他人无法通过该公钥推算出相应的私钥。

非对称密钥加密系统的主要应用有两个,分别是公钥加密和公钥认证。公钥加密和公钥认证的过程并不一样,下面分别进行简单介绍。

公钥加密

加密是将数据资料加密,使得非法用户即使取得加密过的资料,也无法获取正确的资料内容,所以数据加密可以保护数据,防止监听攻击。其重点在于数据的安全性。

为了让读者更容易理解什么是公钥加密,先来看一个简单的例子。若有两个用户Jack和Michael,Jack想把一段文字通过公钥加密技术发送给Michael,而Michael有一对公钥和私钥,那么这个加密和解密过程如下:

Michael将他的公钥发送给Jack。

Jack就用Michael的公钥对文字进行加密,将加密后的结果发送给Michael。3. Michael用他的私钥解密Jack发送给他的消息。整体过程如图1所示。

公钥认证

身份认证与加密不同,主要用于鉴别用户的真伪。这里我们只要能够鉴别一个用户的私钥是正确的,就可以鉴别这个用户的真伪。列举一个简单的例子,Michael想让Jack知道自己是真实的Michael,而不是其他人假冒的,整个身份认证的过程如下:

Michael使用他的私钥对文件进行签名,发送给Jack。

Jack使用Michael的公钥解密文件,如果解密成功,则证明Michael的私钥是正确的,因而就完成了对Michael的身份鉴别。从而验证签名。

从上述两个例子可以看出,公钥加密是发送者先用公钥加密,接收者再用私钥解密,而公钥认证则是发送者先用私钥加密,接收者再用公钥解密以验证。


数字签名

在区块链的分布式网络里,节点之间进行通讯并达成信任,需要依赖数字签名技术,数字签名涉及到公钥、私钥和钱包等工具,它有两个作用:

一是证明消息确实是由信息发送方签名并发出来的。

二是确定消息的完整性。

数字签名技术是将摘要信息用发送者的私钥加密,与原文一起传送给接收者。接收者只有用发送者的公钥才能解密被加密的摘要信息,然后用HASH函数对收到的原文产生一个摘要信息,与解密的摘要信息对比。如果相同,则说明收到的信息是完整的,在传输过程中没有被修改,否则说明信息被修改过。因此数字签名能够验证信息的完整性。

我们用一个例子来说明,先看上图,发送方把hello kitty的信息进行双重处理:

1.通过接收方公钥来进行加密得到密文。

为什么要接收方的公钥来加密? 因为只有接收方的私钥可以解开接受方公钥加过的密,保证只有接受方可以解密。

2.对hello kitty哈希得到摘要,接着再经过发送方私匙进行签名,签名后得出的数字签名和密文一起发给接受方。

为什么要用发送方的私钥签名?因为这种方式,才能让接收方确认这条信息是发送方发出来的。只有发送方的公钥才能解开发送方的签名。

接收方同样对接收到的信息(密文及数字签名)进行以下步骤处理:

1.用自己的私匙解开密文,得到hello kitty.

2.对hello kitty哈希得到摘要。

3.通过发送方的公钥解开发送方签名,得到摘要‚。

4.对解密密文的摘要�和解密数字签名的摘要‚进行对比,若摘要一致,则可确认信息为发送方所发,及信息的完整性。

总结

数字签名是一种能被轻松识别的认证工具,因为验证它的过程本质上只是用计算机解一道数学题而已。所以,眨眼间就可以完成认证过程,不用像人为比对字迹或印章那样耗时费力。

通过数字签名我们主要实现了:

1、接收方能通过发送方的公钥认证发送方的身份

2、通过私钥方式签名,别人伪造不了信息的签名

3、发送方也通过私钥签名抵赖不了对信息的签名

4、通过数字摘要技术保证了数据的完整性

5、哈希函数也保证了数据不可有任何篡改

明明没有和TA相见,但在比特世界里,数字签名却可以让你见字如面。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容