【ACM算法竞赛日常训练】DAY4题解与分析【树】【子序列】| 组合数学 | 动态规划

DAY4共2题:

  • 树(组合数学)

  • 子序列(dp,数学)

🎈 作者:Eriktse
🎈 简介:19岁,211计算机在读,现役ACM银牌选手🏆力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法。(优质好文持续更新中……)🚀
🎈 原文链接(阅读原文获得更好阅读体验):https://www.eriktse.com/algorithm/1095.html

题目传送门:https://ac.nowcoder.com/acm/problem/13611

通过观察条件“一个染色方案是合法的,当且仅当对于所有相同颜色的点对(x,y),x到y的路径上的所有点的颜色都要与x和y相同。”我们可以发现,当且仅当染色的点可以全部连通时可以满足条件。

所以现在问题是如何将n个点划分为k块。

我们可以发现在树上,任意删除一条边都会使得联通块个数 + 1

其实块数只要<= k即可,因为我们可以有一些颜色不使用。所以要划分为i块,只需要从n - 1条边中任选i - 1条进行删除即可,方案数是C(n - 1, i - 1)

假设现在我们得到了i (i <= k)个联通块,需要将i种颜色染上去,首先需要C(k, i)种方法取出颜色,然后A(i, i)一个全排列将颜色染上去。

所以答案公式如下:

ans=\sum_{i=1}^{k}C(n - 1, i - 1)C(k, i)i!

可能涉及一些快速幂乘法逆元的知识,需要自行学习。

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 350, p = 1e9 + 7;

int fac[maxn];

int qmi(int a, int b)
{
    int res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p, b >>= 1;
    }
    return res;
}

int inv(int x){return qmi(x, p - 2);}

int C(int n, int m)
{
    if(n < m || n < 0 || m < 0)return 0;
    return fac[n] * inv(fac[n - m] * fac[m] % p) % p;
}

signed main()
{
    int n, k;scanf("%lld %lld", &n, &k);
    fac[0] = 1;
    for(int i = 1;i <= n; ++ i)fac[i] = fac[i - 1] * i % p;
    
    int ans = 0;
    for(int i = 1;i <= n; ++ i)//分为i块
    {
        int tmp = C(n - 1, i - 1) * C(k, i) % p * fac[i] % p;
        ans = (ans + tmp) % p;
    }
    printf("%lld\n", ans);
    return 0;
}

子序列

题目传送门:https://ac.nowcoder.com/acm/problem/17065

小技巧:观察数据范围,比较小,应该可以容纳O(n^3)的复杂度,所以可以大胆考虑dp。

首先定义状态dp[i][j]表示以第i个元素结尾,且长度为j的序列的个数

再考虑一下转移,题目中的条件可以进行一些转换:

{a_{p_i}}^{p_j} < {a_{p_j}}^{p_i}

等价于:

\frac{log(a_{p_i})}{p_i} < \frac{log(a_{p_j})}{p_j}

我们可以记:

b_i = \frac{log(a_{p_i})}{p_i}

也就是说对于选出的子序列中的每一个元素,他们满足一个偏序关系,只要我的b[j] > b[i],那么b[j]将会大于所有的b[k] (k < i)

所以我们可以考虑以下的转移:

dp_{i, j} = \sum_{k=1}^{i - 1}[b_i > b_k] \times dp_{k, j - 1}

考虑初始化,当最后一个元素确定,序列长度为1(j = 1)时,方案仅有1种。

最后的答案是将所有情况加起来(注意取模,不过这道题数据较弱,不取模也可以过)。

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 109, p = 1e9 + 7;

//dp[i][j]表示以第i个元素结尾,长度为j的方案数
int a[maxn], dp[maxn][maxn];


signed main()
{
    int n;scanf("%lld", &n);
    for(int i = 1;i <= n; ++ i)scanf("%lld", a + i);
    
    for(int i = 1;i <= n; ++ i)
    {
        dp[i][1] = 1;
        for(int j = 1;j <= i; ++ j)
        {
            for(int k = 1; k < i; ++ k)
            {
                if(log(a[k]) / k < log(a[i]) / i)
                {
                    dp[i][j] += dp[k][j - 1];
                    dp[i][j] %= p;
                }
            }
        }
    }

    int ans = 0;
    for(int i = 1;i <= n; ++ i)
        for(int j = 1;j <= i; ++ j)
        {
            ans = (ans + dp[i][j]) % p;
        }
    printf("%lld\n", ans);
    return 0;
}

🎈 本文由eriktse原创,创作不易,如果对您有帮助,欢迎小伙伴们点赞👍、收藏⭐、留言💬

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容