Task7:模型部署

ONNX-ONNX Runtime部署

1. 部署ImageNet预训练图像分类模型

#安装配置环境
pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113

pip install numpy pandas matplotlib tqdm opencv-python pillow onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simple

导出ONNX模型(把原生pytorch训练得到的图像分类模型,导出为ONNX格式,用于后续在ONNX Runtime推理引擎上部署)

#导入工具包
import torch
from torchvision import models

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

#载入ImageNet预训练图像分类模型
model=models.resnet18(pretrained=True)
model=model.eval().to(device)
x = torch.randn(1, 3, 256, 256).to(device)
output=model(x)
output.shape
#pytorch模型转为ONNX模型
x = torch.randn(1, 3, 256, 256).to(device)

with torch.no_grad():
    torch.onnx.export(
        model,                  # 要转换的模型
        x,                      # 模型的任意一组输入
        'resnet18.onnx',        # 导出的 ONNX 文件名
        opset_version=11,       # ONNX 算子集版本
        input_names=['input'],  # 输入 Tensor 的名称(自己起名字)
        output_names=['output'] # 输出 Tensor 的名称(自己起名字)
    ) 

#验证ONNX模型导出成功
import onnx

# 读取 ONNX 模型
onnx_model = onnx.load('resnet18.onnx')

# 检查模型格式是否正确
onnx.checker.check_model(onnx_model)
print('无报错,onnx模型载入成功')

#以可读的形式打印计算图
print(onnx.helper.printable_graph(onnx_model.graph))

## 使用Netron对onnx模型可视化
https://netron.app
resnet18.onnx

使用ONNX,读取onnx格式的模型文件,对单张图像文件进行预测

#导入工具包
import onnxruntime
import numpy as np
import torch

#载入onnx模型
ort_session = onnxruntime.InferenceSession('resnet18.onnx')

#构造输入,获取输出结果
x = torch.randn(1, 3, 256, 256).numpy()
x.shape
# onnx runtime 输入
ort_inputs = {'input': x}

# onnx runtime 输出
ort_output = ort_session.run(['output'], ort_inputs)[0]
ort_output.shape

#预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(256),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

#载入测试图像
img_path = 'banana1.jpg'
# 用 pillow 载入
from PIL import Image
img_pil = Image.open(img_path)
img_pil
#运行预处理
input_img = test_transform(img_pil)
input_img.shape
input_tensor = input_img.unsqueeze(0).numpy()
input_tensor.shape

#使用ONNX预测
# ONNX Runtime 输入
ort_inputs = {'input': input_tensor}
# ONNX Runtime 输出
pred_logits = ort_session.run(['output'], ort_inputs)[0]
pred_logits = torch.tensor(pred_logits)
pred_logits.shape
import torch.nn.functional as F
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
pred_softmax.shape

#柱状图可视化
import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(8,4))

x = range(1000)
y = pred_softmax.cpu().detach().numpy()[0]

ax = plt.bar(x, y, alpha=0.5, width=0.3, color='yellow', edgecolor='red', lw=3)
plt.ylim([0, 1.0]) # y轴取值范围
# plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值

plt.xlabel('Class', fontsize=20)
plt.ylabel('Confidence', fontsize=20)
plt.tick_params(labelsize=16) # 坐标文字大小
plt.title(img_path, fontsize=25)

plt.show()

2. 部署自己训练的水果图像分类模型

导出ONNX模型

#导入工具包
import torch
from torchvision import models

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

#导入训练好的模型
model = torch.load('checkpoints/fruit30_pytorch_20220814.pth')
model = model.eval().to(device)

x = torch.randn(1, 3, 256, 256).to(device)
output = model(x)
output.shape

#pytorch模型转为ONNX模型
x = torch.randn(1, 3, 256, 256).to(device)

with torch.no_grad():
    torch.onnx.export(
        model,                   # 要转换的模型
        x,                       # 模型的任意一组输入
        'fruit30_resnet18.onnx', # 导出的 ONNX 文件名
        opset_version=11,        # ONNX 算子集版本
        input_names=['input'],   # 输入 Tensor 的名称(自己起名字)
        output_names=['output']  # 输出 Tensor 的名称(自己起名字)
    ) 

#验证ONNX模型导出成功import onnx

# 读取 ONNX 模型
onnx_model = onnx.load('fruit30_resnet18.onnx')

# 检查模型格式是否正确
onnx.checker.check_model(onnx_model)

print('无报错,onnx模型载入成功')

#以可读的形式打印计算图
print(onnx.helper.printable_graph(onnx_model.graph))

### 使用Netron对onnx模型可视化  https://netron.app
fruit30_resnet18.onnx

使用ONNX,读取onnx格式的模型文件,预测单张图像

#导入工具包
import onnxruntime
import numpy as np
import torch

#载入onnx模型
ort_session = onnxruntime.InferenceSession('fruit30_resnet18.onnx')

#构造输入,获取输出结果
x = torch.randn(1, 3, 256, 256).numpy()
x.shape
# onnx runtime 输入
ort_inputs = {'input': x}

# onnx runtime 输出
ort_output = ort_session.run(['output'], ort_inputs)[0]
ort_output.shape

#预处理
from torchvision import transforms

# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(256),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

#载入测试图像
img_path = 'test_img/watermelon1.jpg'
# 用 pillow 载入
from PIL import Image
img_pil = Image.open(img_path)
img_pil
input_img = test_transform(img_pil)
input_img.shape
input_tensor = input_img.unsqueeze(0).numpy()
input_tensor.shape

#ONNX预测
# ONNX Runtime 输入
ort_inputs = {'input': input_tensor}

# ONNX Runtime 输出
pred_logits = ort_session.run(['output'], ort_inputs)[0]
pred_logits = torch.tensor(pred_logits)

pred_logits.shape
import torch.nn.functional as F
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
pred_softmax.shape

#解析预测结果
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
idx_to_labels

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(22, 10))

x = idx_to_labels.values()
y = pred_softmax.cpu().detach().numpy()[0] * 100
width = 0.45 # 柱状图宽度

ax = plt.bar(x, y, width)

plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值
plt.tick_params(labelsize=20) # 设置坐标文字大小

plt.title(img_path, fontsize=30)
plt.xticks(rotation=45) # 横轴文字旋转
plt.xlabel('类别', fontsize=20)
plt.ylabel('置信度', fontsize=20)
plt.show()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,002评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,777评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,341评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,085评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,110评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,868评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,528评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,422评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,938评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,067评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,199评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,877评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,540评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,079评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,192评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,514评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,190评论 2 357

推荐阅读更多精彩内容