2019-04 MIA文章精选

传统滤波方法不保边的原因是:都使用全窗口回归,会有沿着图像边缘的扩散。本文提出把窗口的边缘直接放在待处理像素的位置,这就切断了可能的法线方向的扩散。具体到一个像素位置,直接枚举八个可能的方向,让数据自适应地选择一个最佳的方向。

Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma, 818训练,203测试;用20个测试数据比较AI和医生的分割结果。AI assistance improved contouring accuracy (five of eight oncologists had a higher median DSC after AI assistance; average median DSC, 0.74 vs 0.78; P < .001), reduced intra- and interobserver variation (by 36.4% and 54.5%, respectively), and reduced contouring time (by 39.4%). AI自动勾画然后医生修改,平均精度由74%提高至79%。

  • MED NeurIPS 2018: Is your ML Methods solving a real clinical problem? by Tal Arbel

Focus lesion detection, segmentation, disease prediction in patient images
ML in Medical Imaging: patient diagnosis, understanding disease development, predicting patient outcome from images, personalized medicine.

ML方法没有被广泛应用到临床workflow的原因/挑战

  • CV中的DL方法在医学图像中不总是work。比如BraTS分割任务DL很成功,但是存活时间预测任务效果不如人意。**Errors in performance lead to clinician mistrust.
  • Clinicians don't trust black box methods. Interpretability is very important.
  • No large scale annotated medical dataset for training. 导致通常在small, proprietary or benchmark dataset开发算法,缺乏鲁棒性。

Examine machine learning performance and metrics in real clinical contexts

  • 临床影响:将病灶检测和分割算法加入商业软件中,提升了efficiency and precision,节省~5倍的时间和金钱;提升treatment analysis for almost all (22/23) new MS drugs in circulation wordwide. Clinical impact formula: Synergy with clinicians, end-users when designing method + trying methods and metrics for success to real clinical objectives = Clinical impact

201811-MICCAI 18 分割Decathlon冠军:3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training,Nvidia. [arxiv]

Exploiting multi-viewpoint consistency for co-training.

LiTS测试集:95.9, 72.6


实验结果
  • Why could a multiclass dice loss function solve the class imbalance problem?

In cross entropy, each pixel has the same weight irrespective of the class. by using a Dice loss, the weight of a pixel is different. If the CE tumor is small for example, then false positives or false negatives will impact the dice loss more and will thus intrinsically be weighted more.

  1. Novel image reconstruction techniques that quickly produce images humans can read from source data.
  2. A focus on automated image labeling and annotation, which includes “information extraction from the imaging report, electronic phenotyping and prospective structure image reporting.”
  3. Machine learning models for clinical data, including pre-trained and distributed learning techniques.
  4. Algorithms capable of explaining their findings to users.
  5. Methods for deidentifying images and sharing image datasets that are adequately validated.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,490评论 0 10
  • 生命的脚印 75/365 日行一善 2018目标:断舍离、诗经、养成自律 2018年05月02日 周三 晴 ...
    静待花开80后阅读 114评论 0 0
  • 怎么领糖果,我也是第一次研究,希望小白用户可以拿来借鉴,如果你是老司机可以忽略!!! 【之前的一篇文章】 什么是糖...
    区块链话匣子阅读 1,359评论 0 1
  • 1.遵循一个原则,完整的家庭和子女教育,个人的自由与发展,we will cross the bridge whe...
    Willingheart阅读 127评论 0 1
  • 百忧集行 [ 唐 ] 杜甫 忆年十五心尚孩,健如黄犊走复来。 庭前八月梨枣熟,一日上树能千回。 即今倏忽已五十,坐...
    中华瀚泽阅读 392评论 2 6