大数据的十大流行误区,你中了几个?

技术和科学每天都在观察革命性的进步,企业正在努力从中汲取最大的利益。数据分析是这样一个领域,他们利用大数据和数据科学,将大量数据与业务战略相结合。

实际上,大数据对所有企业都有合理的承诺,无论其规模如何。通过大数据分析,企业可以获得洞察力,帮助他们不仅可以增加收入,还可以了解他们的服务和产品中的差距。

让我们来看看最常见的大数据误区

作为一项不断发展的技术和相对较新的概念,大数据其实存在极少的误区。但是,如果我们不理清这一些极少的误区,那么不正确的理解可能会导致严重后果。

因此,在这篇文章中,慧都网将分享当下流行的大数据误区和相应的大数据事实,以了解真相。这将帮助您解决这些大数据误区,并确保业务正常运作。

误区1:大数据无处不在

对大数据以及人工智能概念都是模糊不清的,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:589348389,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 。从java和linux入手,其后逐步的深入到HADOOP-hive-oozie-web-flume-python-hbase-kafka-scala-SPARK等相关知识一一分享!

事实: 目前,大数据技术和服务确实是使用率创历史新高的行业的关注焦点。但是,Gartner的大数据事实和数据显示,在所有组织中,只有73%的组织正在计划和投资大数据。但是,它们仍处于大数据采用的萌芽阶段。

有趣的是,只有13%的受访组织部署了大数据解决方案。Gartner的大数据事实表明,组织面临的主要挑战是如何通过适当的策略从大数据中获取价值。

除此之外,由于它是一项复杂的技术,许多组织在试验阶段遇到障碍,因为它们没有将技术与具体的用例和业务流程联系起来。

误区2:大数据都与大小有关

事实:  大数据的特点是5V——Volume(体积)、Velocity(速度),Variety(品种),Veracity(准确性)和Value(值)。虽然处理大量数据是大数据的主要特征之一, 然而数量仅仅是大数据的主要定义特征。此外,数据的其他功能同样重要。

例如,由于数据以高速处理需求快速进入,因此非常需要数据处理。因此,处理得越快,您就可以获得更新的相关结果。

同样,大数据有多种格式。因此,Variety是大数据的另一个重要特征,它与挑战和创新解决方案相结合,以克服这些挑战。

因此,必须考虑大数据超出数据的大小,并应考虑其速度和多样性。此外,如果我们不考虑具有同等重要性的其他特征,它可能会将简单的解决方案变成复杂的解决方案,从长远来看会导致成本,存储和问题。

误区3:大数据可以预测业务未来的一切

事实: 分析可以使用大数据预测趋势,但不是推动业务发展的数据。企业有许多因素,如经济,人力资源,技术等等。因此,当涉及到预测业务的未来时,您无法通过数据预测某些事情。

那么,大数据为数据分析做了什么?通过比较历史数据,大数据进行的预测推断将来会发生什么。这些历史数据显示了过去发生的事情。即使您正在使用实时数据进行分析,它也将成为一些概率论的结果。因此,它不是100%正确。但是,如果实验数据越多且相关性越高,预测结果将更准确。

但实际上,大数据事实是,即使您使用复杂的统计分析,它也往往无法预测正确的结果。看选举民意调查!

误区4:大数据意味着大预算,而且适用于大公司

事实:  我们已经看到像跨国公司和政府机构这样的组织投入巨资建立大规模数据中心和高端技术来实施大数据。不仅如此,聘用熟练的大数据专业人员和数据科学家也是一件非常昂贵的事情,因为他们的需求因市场资源紧张而很高。

但是,时间已经改变。随着其越来越有用,像Apache这样的供应商降低了大数据工具的许可成本,使其更便宜。除此之外,他们还提出了新的工具和技术,旨在帮助企业收集数据。

除此之外,我们必须记住,云计算还能够以较低的成本为初创企业和小型组织提供大数据技术和平台。因此,所有类型的组织都可以负担得起大数据。

误区5:机器学习概念与大数据有关

事实: 机器学习经常处理大数据。但是,机器学习的基本概念是使用这些数据来建模底层流程以便更好地利用。此外,机器学习完全基于机器学习算法,该算法可以解析数据集,然后应用通过它学习的内容来做出有意义的决策。

因此,大数据和机器学习相结合可以提供有价值的见解。

误区6:数据仓库不需要大数据

事实: 首先,数据仓库是一种架构,而大数据纯粹是一种技术。因此,人们不能在技术上取代其他人。像大数据这样的技术可以存储和管理大量数据,以合理的低成本将它们用于不同的大数据解决方案。

另一方面,作为框架数据仓库组织数据以提供它的单个版本。它整合来自不同来源的数据,并以易读的方式组织它们。它还具有数据沿袭功能,有助于识别数据的来源。

除此之外,我们知道可以在不受现有数据仓库实施和业务分析干扰的情况下执行大数据分析。

因此,数据仓库和大数据有其明确的需求和应用程序。

误区7:大数据技术将消除数据集成的必要性

事实:  大数据技术使用“读取模式”方法来处理信息。这使组织可以使用多个数据模型来读取相同的源。人们普遍认为,它可以灵活地允许最终用户确定如何按需解释数据资产。此外,假设大数据提供针对各个用户定制的数据访问。

但是,实际上,用户大多依赖于数据所在的“写入模式”

描述得当

内容是规定的

数据完整性及其与场景的关系

误区8:大数据总是质量数据

事实: 大数据并不一定意味着它包含干净和高质量的数据。相反,在大多数情况下,大数据包括数据质量错误。此外,为了从收集的大数据中利用更好和正确的见解,有必要对它们进行清理。因此,错误的假设是不需要数据清理,收集或分析大数据。

误区9:大数据只用于分析

事实: 您将从各种来源获得至少12种不同的大数据定义。在某个地方,它被定义为5V,在某个地方作为海量数据集,在某个地方它与分析相交。因此,每个人都有不同的方法来定义。

此外,大数据是一种除了数据分析之外还具有许多功能的技术。因此,大数据事实在许多场景中,它用于分析复杂的用例模式,以获得更好的洞察力来解决问题。

误区10:Hadoop是内存技术的替代品

事实: Hadoop是最受欢迎的大数据工具。内存技术与Hadoop底层架构集成,有助于实时集成来自各种源的大量数据。因此,内存是Hadoop的理想平台及其技术基础。

因此,Hadoop不是竞争技术或内存计算的替代品。

总结

如果没有弄清大数据误区对如今的企业阻碍是非常大的,它们可能导致糟糕的商业决策产生。如果不对这些神话中的大数据事实进行验证,企业就会浪费宝贵的资源,否则这些资源可能会被用来提高企业的灵活性。

希望本次的大数据十大误区的分享能对你有用,您知道关于大数据的其他误区吗?在评论部分写下面的内容,我们将对此进行解释。

我自己是一个从事了6年的Java全栈工程师,最近整理了一套适合2019年学习的Java\大数据资料,从基础的Java、大数据面向对象到进阶的框架知识

都有整理哦,可以来我的主页免费领取哦。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容