sicily_1020 Big Integer

题目

Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

Description

Long long ago, there was a super computer that could deal with VeryLongIntegers(no VeryLongInteger will be negative). Do you know how this computer stores the VeryLongIntegers? This computer has a set of n positive integers: b1,b2,...,bn, which is called a basis for the computer.

The basis satisfies two properties:

  1. 1 < bi <= 1000 (1 <= i <= n),
  2. gcd(bi,bj) = 1 (1 <= i,j <= n, i ≠ j).

Let M = b1b2...*bn

Given an integer x, which is nonegative and less than M, the ordered n-tuples (x mod b1, x mod b2, ..., x mod bn), which is called the representation of x, will be put into the computer.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains three lines.
The first line contains an integer n(<=100).
The second line contains n integers: b1,b2,...,bn, which is the basis of the computer.
The third line contains a single VeryLongInteger x.

Each VeryLongInteger will be 400 or fewer characters in length, and will only contain digits (no VeryLongInteger will be negative).

Output

For each test case, print exactly one line -- the representation of x.
The output format is:(r1,r2,...,rn)

Sample Input

2

3
2 3 5
10

4
2 3 5 7
13

Sample Output

(0,1,0)
(1,1,3,6)

题目大意

给定一个高精度数,求出它除以n个整形数的模,并写成向量的形式。

思路

在处理数的过程中只留下模,防止数据溢出。

代码

#include<iostream>
#include<string>
using std::cin;
using std::cout;
using std::string;

int mod(string divided, int divisor) {
  int p = 0, tmp = 0;
  tmp = divided[p++] - '0';
  while (true) {
    while (tmp < divisor) {
      if (p == divided.length()) return tmp;
      tmp = 10 * tmp + divided[p++] - '0';
    }
    tmp %= divisor;
  }
}

int main() {
  int T;

  cin >> T;
  while (T--) {
    int n, b[100 + 1];
    string x;

    cin >> n;
    for (int i = 0; i < n; i++) cin >> b[i];
    cin >> x;

    cout << '(';
    for (int Head = 1, i = 0; i < n; Head = 0, i++) {
      if (!Head) cout << ',';
      cout << mod(x, b[i]);
    }
    cout << ')' << endl;
  }
  return 0;
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容