attention的数学解释

Jason Brownlee博士的系列博客真的很受用哦。原文链接见:Attention in Long Short-Term Memory Recurrent Neural Networks

1. 原来的Encoder–Decoder

image

在这个模型中,encoder只将最后一个输出递给了decoder,这样一来,decoder就相当于对输入只知道梗概意思,而无法得到更多输入的细节,比如输入的位置信息。所以想想就知道了,如果输入的句子比较短、意思比较简单,翻译起来还行,长了复杂了就做不好了嘛。

2. 对齐问题

前面说了,只给我递来最后一个输出,不好;但如果把每个step的输出都传给我,又有一个问题了,怎么对齐?

什么是对齐?比如说英文翻译成中文,假设英文有10个词,对应的中文翻译只有6个词,那么就有了哪些英文词对哪些中文词的问题了嘛。

传统的翻译专门有一块是搞对齐的,是一个比较独立的task(传统的NLP基本上每一块都是独立的task啦)。

  1. attention机制
image

我们从输出端,即decoder部分,倒过来一步一步看公式。

St=f(S_{t−1},y_{t−1},c_t)

S_t是指decoder在t时刻的状态输出,S_{t−1}是指decoder在t−1时刻的状态输出,y_{t−1}是t−1时刻的label(注意是label,不是我们输出的y),c_t看下一个公式,f是一个RNN。

c_t=∑_{j=1}^{T_{x}}a_{tj}h_j

h_j是指第j个输入在encoder里的输出,a_{tj}是一个权重

a_{tj}=\frac{exp(e_{tj})}{∑_{k=1}^{Tx}exp(e_{tk})}

这个公式跟softmax是何其相似,道理是一样的,是为了得到条件概率P(a|e),这个a的意义是当前这一步decoder对齐第j个输入的程度。

最后一个公式,

e_{tj}=g(S_{t−1},h_j)=V⋅tanh(W⋅h_j+U⋅S_{t−1}+b)

这个g可以用一个小型的神经网络来逼近,它用来计算S_{t−1}, h_j这两者的关系分数,如果分数大则说明关注度较高,注意力分布就会更加集中在这个输入单词上,这个函数在文章Neural Machine Translation by Jointly Learning to Align and Translate(2014)中称之为校准模型(alignment model),文中提到这个函数是RNN前馈网络中的一系列参数,在训练过程会训练这些参数, 基于Attention-Based LSTM模型的文本分类技术的研究(2016)给出了上式的右侧部分作为拓展。

好了,把四个公式串起来看,这个attention机制可以总结为一句话:当前一步输出StSt应该对齐哪一步输入,主要取决于前一步输出S_{t−1}和这一步输入的encoder结果h_{j}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343