Python科学计算——检包络与去包络

检波 (detection):广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。狭义的检波是指从调幅波的包络提取调制信号的过程,这种检波方法也被称为包络检波希尔伯特变换可以用作包络检波。

希尔伯特变换

Hilbert 变换能在振幅保持不变的情况下将输入信号的相角偏移 90 度,简单地说就是能够将正弦波形转换为余弦波形:



相角偏移90度相当于复数平面上的点与虚数单位 1j 相乘,因此 Hilbert 变换的频率响应可以用如下公式表示:



Hilbert 转换函数在 scipy.fftpack 函数库中,它的调用格式如下:
form scipy import fftpack
fftpack.hilbert(x)

包络检波

Hilbert 变换可以用作包络检波。具体算法如下:

# original singal
sampling_rate = 51200
fft_size = 51200
t = np.arange(0,1.0,1.0/sampling_rate)
ts = np.array(map(lambda x : x*1000, t))
x = np.sin(2*np.pi*1e3*t) + 0.1 * np.sin(2*np.pi*980*t) + 0.10 * np.sin(2*np.pi*1020*t)+ 0.01 * np.sin(2*np.pi*960*t) + 0.01 * np.sin(2*np.pi*1040*t)
xn = x + 0.005*np.random.normal(0.0,1.0,len(x))
# envelop detecting
hx = fftpack.hilbert(x)
hy = np.sqrt(x**2+hx**2)

检波性能分析

用频率扫描波可以测量滤波器的频率响应,也可以用它检测 Hilbert 变换用于包络检波的性能:

# parameters of filter
a = np.array([1.0, -1.947463016918843, 0.9555873701383931])
b = np.array([0.9833716591860479, -1.947463016918843, 0.9722157109523452])
# chirp signal
t = np.arange(0, 0.5, 1/44100.0)
x= signal.chirp(t, f0=10, t1 = 0.5, f1=1000.0)
# the chirp signal through the filter
y = signal.lfilter(b, a, x)
# hilbert transform
hy = fftpack.hilbert(y)

从上图可以看出,在高频和低频处包络计算出现较大的误差,而中频部分能很好地计算出包络的形状。

去包络算法

在 Hilbert 变换检测出包络的基础上,可以利用简单的去包络算法将包络从原始信号中去除而恢复载波信息,去包络算法用公式表示如下:


y = (2*x-hy)/hy*0.5 + 0.5

从上面的图可以看出,包络已经被很好的去掉,但是从时域图像,并不能完全确定包络被很好的去掉,我们需要从去包络前后信号的频率响应一探究竟:



从去包络前后信号的频率响应图可以看出,包络已经被很好的抑制,只剩下了单频载波信号。

去包络算法性能分析

从上述去包络前信号的频率响应图可以看出,其上下边带的幅度是相等的,当上下边带信号幅度不对等时,去包络算法效果会如何呢?



当边带信号幅度不对等时,包络的抑制效果就会变差,而且还会引入新的频率成份,这将会在一定程度上恶化信号。

Stay hungry, Stay foolish.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • 经典和现代接收机体制<话题通讯电路> 摘要 本文是对宽带无线通信系统中使用的几种经典和现代无线接收机架构的综述。 ...
    zhrep阅读 939评论 0 0
  • 先讨论物理层的基本概念,然后介绍有关数据通信的重要概念以及各种传输媒体的主要特点,但传输媒体不属于物理层的范围。在...
    dmmy大印阅读 1,743评论 0 2
  • FFT (Fast Fourier Transform, 快速傅里叶变换) 是离散傅里叶变换的快速算法,也是数字信...
    Lovingmylove521阅读 31,600评论 19 49
  • 网络协议最底层是物理层(Physical layer),该层关注的是单个比特在物理信道上的传输。传输信道分为三类:...
    Taeyeon37阅读 2,352评论 0 1
  • 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚...
    constant007阅读 4,416评论 1 10