方法使用参见官方文档:
https://tslearn.readthedocs.io/en/latest/gen_modules/tslearn.clustering.html#module-tslearn.clustering
from tslearn.clustering import GlobalAlignmentKernelKMeans, TimeSeriesKMeans, KShape
from tslearn.metrics import sigma_gak
from tslearn.preprocessing import to_time_series_dataset
from tslearn.generators import random_walks
def cluster_method(x, method, max_iter, n_cluster=3, seed=100):
if method == 'KShape':
x = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(x) #数据标准化
model = KShape(n_clusters=n_cluster, max_iter=max_iter, n_init=1, random_state=seed).fit(x)
elif method == 'KMeans_euclidean':
model = TimeSeriesKMeans(n_clusters=n_cluster, metric="euclidean", max_iter=max_iter,
random_state=seed).fit(x)
elif method == 'KMeans_dtw':
model = TimeSeriesKMeans(n_clusters=n_cluster, metric="dtw", max_iter=max_iter,
max_iter_barycenter=100,random_state=seed).fit(x)
elif method == 'KMeans_softdtw':
model = TimeSeriesKMeans(n_clusters=n_cluster, metric="softdtw", max_iter=max_iter,
max_iter_barycenter=100,metric_params={"gamma": .5}, random_state=seed).fit(x)
elif method == 'KernelKMeans':
model = GlobalAlignmentKernelKMeans(n_clusters=n_cluster,
sigma=sigma_gak(input_data),
n_init=20,
verbose=False,
random_state=seed).fit(x)
return model
def input_data_process(method):
if method in ('KMeans_euclidean','KShape'): # 要求时序等长
x = random_walks(n_ts=50, sz=32, d=1)
else: # 其他方法序列可不等长
x = to_time_series_dataset([[1, 2, 3, 4],[1, 2, 3],[2, 5, 6, 7, 8, 9]]) # to_time_series_dataset可将list转换成时序聚类模型需要的输入格式
return x
if __name__ == '__main__':
method = 'KMeans_euclidean'
input_data = input_data_process(method=method)
model = cluster_method(x=input_data, method=method, n_cluster=2, max_iter=100, seed=100)
pred = model.predict(input_data)
pred